Quantum Computers Callenges and Applications

Sandy Irani Computer Science Department UC Irvine

"Simulating Physics with Computers" Richard Feynman

Keynote talk: 1st Conference on Physics and Computation, MIT, 1981

(Image credit: https://www.pma.caltech.edu/content/pma-glance)

"Simulating Physics with Computers" Richard Feynman

Keynote talk: 1st Conference on Physics and Computation, MIT, 1981

Can classical and/or quantum physics be simulated by a classical computer?

"Simulating Physics with Computers" Richard Feynman

Keynote talk: 1st Conference on Physics and Computation, MIT, 1981

Can classical and/or quantum physics be simulated by a classical computer?

Can quantum physics be simulated by a quantum computer?

(Image credit: https://www.pma.caltech.edu/content/pma-glance)

"Simulating Physics with Computers" Richard Feynman

Keynote talk: 1st Conference on Physics and Computation, MIT, 1981

Can classical and/or quantum physics be simulated by a classical computer?

Can quantum physics be simulated by a quantum computer?

Can a universal quantum simulator be built?

(Image credit: https://www.pma.caltech.edu/content/pma-glance)

What can we compute with a quantum computer?

Universal QC with error correction NISQ: Noisy Intermediate-scale Quantum Computer

Quantum Mechanics: "Probability with Minus Signs"

Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1

Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1

A quantum bit can be partially in state $|0\rangle$ and state $|1\rangle$:

$\alpha |0\rangle + \beta |1\rangle$

 α_0 and α_1 are complex numbers.

Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1

A quantum bit can be partially in state $|0\rangle$ and state $|1\rangle$:

 $\alpha |0\rangle + \beta |1\rangle$

 α_0 and α_1 are complex numbers.

Atfer measurement:

0 with probability $|\alpha_0|^2$afterwards the state has collapsed to $|0\rangle$ 1 with probability $|\alpha_1|^2$afterwards the state has collapsed to $|1\rangle$ Quantum Information: n qubits

State is a superposition over $N = 2^n$ possible states:

 $|\psi\rangle = \sum_{x \in \{1,...,2^n\}} \alpha_x |x\rangle$

Quantum Information: n qubits

State is a superposition over $N = 2^n$ possible states:

$$|\psi\rangle = \sum_{x \in \{1,...,2^n\}} \alpha_x |x\rangle$$

To express a state with 200 qubits requires 2²⁰⁰ complex numbers.

Quantum Information: n qubits

State is a superposition over $N = 2^n$ possible states:

$$|\psi\rangle = \sum_{x \in \{1,...,2^n\}} \alpha_x |x\rangle$$

To express a state with 200 qubits requires 2²⁰⁰ complex numbers.

We have very limited access to this wealth of information: If all *n* qubits are measured, state collapses to $|x\rangle$

Exponentially many answers but only one can be observed.

Quantum speed up comes from algorithms that use negative interference to boost the amplitude of the correct answer.

Quantum Circuits

 U_6 U1 () U_1 input U_7 O U_5 0 $|U_2|$ U_8 0 $|U_9|$ 0 $|U_{1\phi}|$ $|U_3|$ 0 $|U_{12}|$ 0 U_4 M 0

Quantum Circuits

 $|U_6|$ U_1 () U_1 input U_7 () $|U_5|$ 0 $|U_2|$ U_8 0 $|U_9|$ 0 U_{10} U_3 0 $|U_{12}|$ 0 U_4 M 0

Adiabatic Quantum Computing

[Farhi, Goldstone, Gutman, Lapan, Lundgren, 2001]

Start State: Ground state of an "easy" Hamiltonian Desired State: Ground state of final Hamiltonian

 $H(t) = (1 - t)H_s + tH_f$ $t \in [0, 1]$

Adiabatic Quantum Computing

[Farhi, Goldstone, Gutman, Lapan, Lundgren, 2001]

Quantum Complexity Classes

Quantum Complexity Classes

Quantum Supremacy

Can we devise a problem that is specifically designed to show that quantum computers are more powerful than classical computers?

Good candidate: sampling from a distribution that is the output of a random quantum circuit.

Quantum Verification

How can a classical computer verify that a quantum computer has obtained the correct answer to a computational problem? [Mahadev 2018]

[Aharonov, Ben-Or, Eban] [Broadbent, Fitzsimons, Kashefi] [Reichardt, Unger, Vazirani]

[Lloyd 1996] [Berry, Childs, Cleve, Kothari, Somma 2015] [Haah, Hastings, Kothari, Low 2018] [Low Chuang 2016, 2017]

QAOA: Quantum Approximate Optimization Algorithm

 $B(\beta_p)C(\gamma_p),\ldots,B(\beta_1)C(\gamma_1)|\psi\rangle$

Alternate the different "amounts" of the same two operations. One operation alters the current solution

One operation favors "better" solutions.

The entire algorithm is parameterized by the vector $(\beta_{\rho}, \gamma_{\rho}, \dots, \beta_1, \gamma_1)$

Use a classical algorithm (like gradient descent) to find the vector that produces the best solution.

[Farhi, Goldstone, Gutmann]

Thank You!