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The Origins of Quantum Computing

"Simulating Physics with Computers”
Richard Feynman

Keynote talk: 15! Conference on Physics
and Computation, MIT, 1981

(Image credit: https://www.pma.caltech.edu/content/pma-glance)
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The Origins of Quantum Computing

"Simulating Physics with Computers”
Richard Feynman

Keynote talk: 15! Conference on Physics
and Computation, MIT, 1981

Can classical and/or quantum physics be simulated by a classical
computer?

Can quantum physics be simulated by a quantum computer?

Can a universal quantum simulator be built?

(Image credit: https://www.pma.caltech.edu/content/pma-glance)
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What can we
compute with a
quantum
computer?
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What can we
compute with a [ ]

quantum N
computer? %
>

Universal QC with error correction
NISQ: Noisy Intermediate-scale Quantum Computer
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Quantum Mechanics: "Probability with Minus Signs”
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Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1
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Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1

A quantum bit can be partially in state |0) and state |1):

oc0) + B[1)

Xp and o4 are complex numbers.
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Quantum Information: 1 qubit

A bit of classical information: state is 0 or 1

A quantum bit can be partially in state |0) and state |1):

oc0) + B[1)

Xp and o4 are complex numbers.

Atfer measurement:

0 with probability | g |?....afterwards the state has collapsed to

1 with probability |x1|?....afterwards the state has collapsed to
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Quantum Information: n qubits

State is a superposition over N = 2" possible states:

) = xeqn,...2n) x| X)
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State is a superposition over N = 2" possible states:

) = xeqn,...2n) x| X)

To express a state with 200 qubits requires 22°° complex numbers.
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Quantum Information: n qubits

State is a superposition over N = 2" possible states:

) = xeqn,...2n) x| X)

To express a state with 200 qubits requires 22°° complex numbers.

We have very limited access to this wealth of information:
If all n qubits are measured, state collapses to | x)

Exponentially many Quantum speed up comes from

answers but onIy one algorithms that use negative
interference to boost the amplitude
can be observed.

of the correct answer.
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Quantum Circuits
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Adiabatic Quantum Computing

[Farhi, Goldstone, Gutman, Lapan, Lundgren, 2001]

Start State: Desired State:
Ground state of an "easy” Ground state of final
Hamiltonian Hamiltonian

Hs g Hf
H(t)=(1—tHs + tH; t €0, 1]
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Adiabatic Quantum Computing

[Farhi, Goldstone, Gutman, Lapan, Lundgren, 2001]

Start State: Desired State:
Ground state of an "easy” Ground state of final
Hamiltonian Hamiltonian

Hs g Hf

. H(t)=(1—-tHs;+tH; tc][0,1]

\{/\/ A Running time is Q(1/poly(A1 — Ag))
A Can be exponential:
/\/ 0 [van Dam, Vazirani, 2001]

>
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Quantum Complexity Classes

NP: solutions

NP-complete can be
Bounded-error effIC!Qntly
Quantum verified

Polynomial Time
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Quantum Complexity Classes

NP: solutions

NP-complete can be
Bounded-error effIC!Qntly
Quantum verified

Polynomial Time

Factoring
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Quantum Supremacy

\ ‘

Can we devise a problem that is specifically designed to show that
guantum computers are more powerful than classical computers?

Good candidate: sampling from a distribution that is the output of a
random quantum circuit.
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Quantum Verification

How can a classical computer verify that a quantum
computer has obtained the correct answer to a com-

putational problem?

[Mahadev 2018]
[Aharonov, Ben-Or, Eban] [Broadbent, Fitzsimons, Kashefi] [Re-

ichardt, Unger, Vazirani]
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Simulating the dynamics of quantum systems over time

P(0)) — —>  [U(1)
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Simulating the dynamics of quantum systems over time

|1|)(O)> —> /ﬁ% _ H‘1|)>
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Simulating the dynamics of quantum systems over time
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Simulating the dynamics of quantum systems over time

0 .
P(0)) —> ,ﬁ% - H). —> N)'(m
= e~ ""'[(0))
‘xgg e

[Lloyd 1996] [Berry, Childs, Cleve, Kothari, Somma 2015]
[Haah, Hastings, Kothari, Low 2018] [Low Chuang 2016, 2017]
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QAOA: Quantum Approximate Optimization Algorithm

B(Bp)C(vp), - - -» B(B1)C(y1)[W)

Alternate the different "7amounts” of the same two operations.
One operation alters the current solution

One operation favors "better” solutions.

The entire algorithm is parameterized by the vector
(ﬁp=YP= RN B1=y1)

Use a classical algorithm (like gradient descent) to find the vector that
produces the best solution.

[Farhi, Goldstone, Gutmann]
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Thank You!
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