THE TWO GOLDEN RULES OF QUANTUM MECHANICS

SESSION \#1

Learning Ohjectives

- The role of probabilities in quantum mechanics
- Outcomes are not necessarily definite
- The nature of quantum superposition
- Superposition as a relative concept
- Measurement disturbance
- We can't make two incompatible measurements at once
- We can apply these ideas to build technologies
- Quantum cryptography is based on quantum measurement

Prerequisite Knowledge

- Light is a wave with a polarization
- Crossed polarizers should be familiar
- Light is emitted in units called photons
- Previous encounter with the photoelectric effect
- The Cartesian plane and vector components
- If advanced, can be taught using formal linear algebra
- Otherwise, perfectly possible to avoid

Mutually Exclusive States

A quantum measurement
distinguishes between two or more mutually exclusive states.

Two states are mutually exclusive if being found in one state means it definitely isn't in the other.

The measurement tells us which of the two states our object was in.

Polarization of Light: Wave Picture

$$
\begin{aligned}
I_{\text {out }} & =\left\|\vec{v}_{\text {out }}\right\|^{2} \\
& =\left|\vec{v}_{\text {in }} \cdot \vec{v}_{\mathrm{a}}\right|^{2}
\end{aligned}
$$

$$
I_{\text {out }}=I_{\text {in }} \cos ^{2} \theta
$$

Malus' Law

The intensity of light that makes it through the analyzer depends on the angle between the analyzer and the light's polarization.

Polarization of Light: Photon Picture

One

 vertically polarized

Light is made up of photons.
What happens to a single photon of light at a polarizer?

Two possibilities:

1) The photon passes through the analyzer
2) The photon is absorbed

$$
\operatorname{Prob}(o u t)=\cos ^{2} \theta
$$

We must consider the probability of each event occurring

Malus' Law with Photons

A horizontally polarized single photon is incident on a polarizer at angle θ.
What are the probabilities of it being absorbed or transmitted?

	$\theta=0^{\circ}$	45°	-45°	-30°	60°	90°
$\frac{I_{\text {out }}}{I_{\text {in }}}=\cos ^{2} \theta$	$I_{\text {out }} / I_{\text {in }}$	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{4}$
$\operatorname{Prob}($ out $)=\cos ^{2} \theta$	Probability transmitted	1	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{4}$	$\frac{1}{4}$
$\operatorname{Prob}(a b s)=\sin ^{2} \theta$	Probability being absorbed	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{4}$
a	1					

Mathematically, no difference between wave and photon picture.
But the interpretation differs greatly.

Breakout Session

1. Which polarization states are mutually exclusive?
2. If a photon makes it through a horizontal polarizer, what can we conclude about its polarization state before and after the polarizer?

Polarization Measurements

The polarizer asks the photons a question, such as:

Are you horizontally or vertically polarized?

Are you
$+30^{\circ}$ or -60° polarized?

A pair of mutually exclusive quantum states is called a measurement basis

Asking questions with polarizers

To solve, we need to describe it in the HV basis

$$
\begin{aligned}
& \nearrow= \frac{1}{\sqrt{2}}(\rightarrow+\uparrow) \\
& \begin{array}{c}
50 \% \\
\text { Probability } \\
\text { Transmitted }
\end{array} \\
& \begin{array}{c}
50 \% \\
\text { Probability } \\
\text { Absorbed }
\end{array}
\end{aligned}
$$

Intuitively, can think about as vector addition

Polarization beyond Malus' Law

Two crossed polarizers
No light passes through

Polarization beyond Malus' Law

Superposition and Measurement

Superposition and Measurement

Superposition and Measurement

Transmits again with 50\% probability

$$
7 \frac{1}{\sqrt{2}}
$$

The photon has a 25% chance of making it through Measurement changes the state!

The Two Golden Rules

Rule \#2
 Measurement uncertainty
 When asked where it is, the photon will be found either "here" or "there"

 ? $O R$

Which of the following states is a superposition state?

A.

Horizontal polarization

$$
\rightarrow=\frac{\nearrow+\searrow}{\sqrt{2}}
$$

1. Vertical polarization

$$
\uparrow=\frac{\nearrow-\searrow}{\sqrt{2}}
$$

C.
$+45^{\circ}$ diagonal polarization

1. None are superposition states

$$
\nearrow=\frac{\rightarrow+\uparrow}{\sqrt{2}}
$$

E.

All could be superposition states

The Two Golden Rules of Quantum Mechanics

$$
\begin{aligned}
& \nearrow=\frac{\rightarrow+\uparrow}{\sqrt{2}} \\
& \searrow=\frac{\rightarrow-\uparrow}{\sqrt{2}}
\end{aligned}
$$

The particle is both

$$
" \rightarrow " \text { AND " " " }
$$

at the same time

$$
B U T
$$

When measured in the \rightarrow / \uparrow basis, it will be found as
" \rightarrow " OR "个"
randomly

Measurement Basis
 Defines which "question"
 I ask the particle
 Superposition
 Always relative to the basis

 in which we are measuring$\rightarrow=\frac{\nearrow+\searrow}{\sqrt{2}}$

$$
\uparrow=\frac{\nearrow-\searrow}{\sqrt{2}}
$$

The particle is both
" 7 " AND " "
at the same time

$$
B U T
$$

When measured in the \nearrow / \searrow basis,
it will be found as
" 7 " OR" ""
randomly

Summary

- Superposition is a relative concept, depending on the measurement basis being used
- The act of measurement changes the state
- Most quantum measurements are incompatible

Polarization and Spin

The three-polarizer experiment is mathematically equivalent to the Stern-Gerlach experiment

Spin-Polarized Electrons
Polarized Photons

Check out the simulation on QuVis! www.st-andrews.ac.uk/physics/quvis/
"Measurement Uncertainty" Demo

Question Break

Break Time

QUANTUM CRYPTOGRAPHY

The Science of Secrets

Cryptography

Keys and Security

Alice

Alice and Bob use a secure channel to share identical copies of a key

Keys and Security

An eavesdropper can see the safe, but can't open it without the key

0 0n

Public channel

Keys

－In real life，the key is information
－Alice and Bob have the information，but the eavesdropper doesn＇t

Safe
Key：The PIN Number

Door Lock
Key：Which pins to press

```
Vレ」^ロ『\lessdot 「V 」 コГVロ」Vロ, シחஜVロ
```



```
」コロケ「レ」'V >пாロVாஜ゙レコ,
```



```
>F」コロ. 「 ••囚ロ『 「> 「V 」ロ
```



```
\bullet「^ロV ■ட 」ロ>>V.
```


The Gaesar Cipher

HELLO

 O~T = 6 letter shift
 = NKRRU ciphertext

Big Problem!
If you know one encrypted letter, you know the whole message!

The One-Time Pad atavemanacmenen

A different Caesar cipher for each letter

HELLO $\xrightarrow[0 \rightarrow \pi]{\text { Encrypt }}$ SUXOI $\xrightarrow[\pi-0]{\text { Decrypt }}$ HELLO
0 ㄲII $=5$ random shifts
I = SUXOI ciphertext

The One-Time Pad

Alice and Bob share a long random binary string
Encode and decode by adding mod-2 (XOR)

The One-Time Pad

8 -bit key
2^{8} possible keys

Number of possible keys $=$ Number of possible messages

Perfectly secure!
But we're forgetting something...

One-Time Pad Big-Time Prohlem

How do Alice and Bob securely share the key in the first place?

Quantum Key Distribution

Alice and Bob generate the key by sending polarization-encoded photons to each other

Quantum Key Distribution

Remember the three polarizers?

If the eavesdropper intercepts, they'll disturb the polarization state

The Heart of QKD

When we measure a quantum state, we disturb it

The No-Cloning Theorem

FORBIDDEN

Polarization Qubits

Encode binary "o" or " 1 " as a polarization state, with two possible bases

Question Break

Quantum Key Distrihution [QKD]

- QKD uses single-photon signals to establish a secure secret key
- Eavesdroppers are detected due to measurement disturbance
- Many protocols exist, including some using entanglement
- The most well-known is the Bennett-Brassard (BB84) protocol

Charles Bennett (left), IBM Research
Giles Brassard (right), Université de Montréal

The BB84 Protocol

Step 7
Repeat and repeat until a long, random binary string is built
Step 8
Estimate the error rate in the string

Step 3
Alice encodes the appropriate qubit and sends it to Bob as a single photon

Step 6
Alice and Bob publicly announce which bases they used, keeping their bit values secret

I used the $\pm 45^{\circ}$
basis

I used the $\pm 45^{\circ}$
basis

Step 4

Bob randomly chooses a measurement basis

Step 5
Bob records the result of his measurement

BB84 Example

1. Alice chooses a RANDOM bit
2. Alice chooses a RANDOM basis
3. Alice send the state to Bob

4. Bob measures in a RANDOM basis
5. Bob records the bit

6. Alice and Bob announce the basis

BB84 Example

Basis Reconciliation
Alice and Bob discard all bits where their bases didn't match

This leaves them with the secret key
01101

What if there's an eavesdropper?

Breakout Session

1. What is the probability that Eve introduces an error for one photon?
2. What is probability that Eve does NOT introduce an error within 100 photons?
3. Why did Alice and Bob need to choose their bases randomly?

Error Estimation \& Correction

The presence of Eve unavoidably introduces errors into Alice and Bob's key

By sacrificing some bits to estimate the error, Alice and Bob can either:

Detect the presence of the eavesdropper OR
Guarantee that no eavesdropper was present

Error Estimation and Correction

Final Key

Parity Check

See if addition of neighbouring bits matches over the whole string

Discard sets with errors
$\&$
One bit from each
$\&$
One bit from each correct set to maintain secrecy

Final Key

QKD Common Misconceptions

- We're not sending a message, we're sharing a key
- The randomness is good!
- No sensitive information is sent until the key is set
- If Alice chooses her states non-randomly, Eve can hack

```
Message 01101000
    Key 01001001
    Cipher 00100001
```

- Announcing the bases gives no information about the key
- They can share that over a public channel

	$\underset{\substack{\downarrow \\ \text { Hveasis }}}{\rightleftarrows}$	\searrow
0	\longrightarrow	\nearrow
1	\uparrow	\searrow

Question Break

Quantum Coins Activity
 Instructions on Slack

Group divides into four teams

Alice
Sends qubits

Bob
Measures
qubits

Eve Intercepts qubits

Moderator
Enforces
quantum rules

Model the photon's state as a coin in one of two boxes Whenever one is measured, the other is shaken

Possible confusion from one quantum state represented with two objects/boxes

QKD Simulators

Simulator from QuVis (St. Andrew's University)
Uses electron spin rather than polarization

QKD Laser Activity

Homebuilt version w/ 3D-printed models
~\$150 USD

Student test groups needed!

Superposition, Measurement, and Quantum Cryptography
Applications \& Technology

Hacking QKD

QKD security is guaranteed by the laws of physics!

 But compromised by the reality of engineering

Sending Photons over Long Distances

Optical fibre

Quantum Random-Number Generators

- Most computers generate "pseudo" random numbers
- The sequence looks random enough, but is perfectly predictable
- Quantum mechanics is truly random
- The sequence is unpredictable, even if we know the quantum states

idQuantique QRNG

Summary

- Quantum systems can carry information
- Measurement in one basis disturbs the other
- These ideas can be used for information security

Thanks for joining!

The next session will be tomorrow at 7pm ET on Wave-Particle Duality and Quantum Computing

Lingering questions?
Please ask on the \#quantum-questions channel

