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FUNDAMENTALS  
OF PHOTONICS 

Module 
1.3 

Basic Geometrical Optics 
Leno S. Pedrotti 
CORD 
Waco, Texas 

Optics is the cornerstone of photonics systems and applications. In this module, you will learn 
about one of the two main divisions of basic optics—geometrical (ray) optics. In the module to 
follow, you will learn about the other—physical (wave) optics. Geometrical optics will help you 
understand the basics of light reflection and refraction and the use of simple optical elements such 
as mirrors, prisms, lenses, and fibers. Physical optics will help you understand the phenomena of 
light wave interference, diffraction, and polarization; the use of thin film coatings on mirrors to 
enhance or suppress reflection; and the operation of such devices as gratings and quarter-wave 
plates. 

Prerequisites 
Before you work through this module, you should have completed Module 1-1, Nature and 
Properties of Light. In addition, you should be able to manipulate and use algebraic formulas, 
deal with units, understand the geometry of circles and triangles, and use the basic trigonometric 
functions (sin, cos, tan) as they apply to the relationships of sides and angles in right triangles. 
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Objectives 
When you finish this module you will be able to: 

• Distinguish between light rays and light waves. 

• State the law of reflection and show with appropriate drawings how it applies to light 
rays at plane and spherical surfaces. 

• State Snell’s law of refraction and show with appropriate drawings how it applies to 
light rays at plane and spherical surfaces. 

• Define index of refraction and give typical values for glass, water, and air. 

• Calculate the critical angle of incidence for the interface between two optical media and 
describe the process of total internal reflection. 

• Describe how total internal reflection can be used to redirect light in prisms and trap 
light in fibers. 

• Describe dispersion of light and show how a prism disperses white light. 

• Calculate the minimum angle of deviation for a prism and show how this angle can be 
used to determine the refractive index of a prism material. 

• Describe what is meant by Gaussian or paraxial optics. 

• Describe the relationship between collimated light and the focal points of convex and 
concave mirrors. 

• Use ray-tracing techniques to locate the images formed by plane and spherical mirrors. 

• Use the mirror equations to determine location, size, orientation, and nature of images 
formed with spherical mirrors. 

• Distinguish between a thin lens and a thick lens. 

• Describe the shapes of three typical converging (positive) thin lenses and three typical 
diverging (negative) thin lenses. 

• Describe the f-number and numerical aperture for a lens and explain how they control 
image brightness. 

• Use ray-tracing techniques to locate images formed by thin lenses. 

• Describe the relationship between collimated light and the focal points of a thin lens. 

• Use the lensmaker’s equation to determine the focal length of a thin lens. 

• Use the thin-lens equations to determine location, size, orientation, and nature of the 
images formed by simple lenses. 
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Scenario—Using Geometrical Optics in the Workplace 
Manuel Martinez is a photonics technician hired recently to work for a large optical 
company that manufactures optical components such as mirrors, lenses, prisms, 
beam splitters, fibers, and Brewster windows—all to customer specifications. While 
in school Manuel studied light imaging with mirrors and lenses, ray tracing, and 
calculations with simple formulas. After two months on the job he has discovered 
that he uses those same ideas day in and day out. To be sure, things are much 
more “high tech” in his company, for now Manuel has access to powerful 
computers and computer programs that trace rays through complicated optical 
systems, often containing elements with nonspherical surfaces, something Manuel 
never had a chance to do at school. He enjoys the challenge of using state-of-the-
art lab equipment he’s never seen before, including autocollimators, 
spectroreflectometers, and surface profilers. All in all, he’s really satisfied because 
all of the optics he had in his “Geo” course back at school really prepared him well 
for his laboratory work here. This month Manuel is learning how to “grind and polish 
optical surfaces to spec,” and how to apply the principles of geometrical optics to 
determine when the surfaces are “near tolerance.”  Manuel finds his work 
fascinating and can hardly wait to get to work each morning. “Geo” was never so 
much fun. 

Opening Demonstrations 
Note: The hands-on exercises that follow are to be used as short introductory laboratory 
demonstrations. They are intended to provide you with a glimpse of some of the phenomena 
covered in this module and to stimulate your interest in the study of optics and photonics. 

1.  Comparing Ordinary Light with Laser Light. In an appropriately darkened room, and 
with plenty of “chalked-up” erasers, examine the dramatic difference between ordinary 
“flashlight” light and laser light. Use a focusable mini MAGLITE (MAG Instrument, Ontario, 
Canada, 909-947-1006) and a well-collimated, ordinary low power (5.0 mW or less) diode laser 
pointer (Edmund Scientific Company, Barrington, New Jersey, 609-573-6250). Shine each light 
beam, in turn, from one side of the room to the other. Have participants “pat the erasers” 
together over the entire path of the light beams. The light beams outline themselves dramatically 
as they scatter their light energy off the settling chalk particles. Which beam remains well 
defined along its path? Which beam more closely describes a “ray of light”? 

2.  Bending Light Rays in a Fish Tank. Fill an ordinary rectangular five-gallon acrylic fish 
tank half full of water. Use the diode laser pointer to trace a “light ray” through the water in the 
fish tank. 

a.  Attach the laser—generally cylindrical in shape—to a stand, making sure that it can be 
directed easily in different directions. From above the tank, direct a beam onto the top of the 
water at an angle of incidence near 50°. (A plane mirror placed under the tank will reflect 
more light back into the water.)  See sketch D-1 below. Use milk or a food coloring (very 
sparingly–a drop at a time) to illuminate the beam. Experimenting beforehand—with a 
smaller container—to determine the right amount of coloring will pay big dividends. With 
the ray visible in the tank, observe the bending of the light beam as it moves from air into 
water, the phenomenon of refraction. 
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b.  Next, direct the diode laser beam through one wall of the tank, up toward the water 
surface. See sketch D-2. Experiment with the laser beam direction until no light emerges at 
the water-air surface and the beam is seen to be totally reflected back into the water. The 
incident angle at the water-air interface is now larger than the critical angle. This 
phenomenon of total internal reflection is used to trap light in fibers. 

  
     (D-1)      (D-2) 

3.  Focusing Parallel Light Rays with a Thin Lens. Set up a positive thin lens, several 
inches in diameter and of focal length around 3 inches, on an optical bench. Arrange two diode 
laser pointers, on stands, so that they send parallel beams onto the front surface of the lens, near 
its outer edge. See sketch D-3. Lower the room lights and use chalk dust as in Demonstration 1 
to illuminate the beams on the imaging side of the lens. The distance from the lens to the point 
where the beams cross is the focal length of the lens. Repeat with a negative lens of the same 
diameter and focal length, sketch D-4. What do the beams do? Where is the focal point? 

 
(D-3) (D-4) 
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Basic Concepts 

I.  THE LAWS OF REFLECTION AND REFRACTION 
We begin our study of basic geometrical optics by examining how light reflects and refracts at 
smooth, plane interfaces. Figure 3-1a shows ordinary reflection of light at a plane surface, and 
Figure 3-1b shows refraction of light at two successive plane surfaces. In each instance, light is 
pictured simply in terms of straight lines, which we refer to as light rays. 
 

  
         (a)                 (b) 

Figure 3-1  Light rays undergoing reflection and refraction at plane surfaces 

After a study of how light reflects and refracts at plane surfaces, we extend our analysis to 
smooth, curved surfaces, thereby setting the stage for light interaction with mirrors and lenses—
the basic elements in many optical systems. 

In this module, the analysis of how light interacts with plane and curved surfaces is carried out 
with light rays. A light ray is nothing more than an imaginary line directed along the path that 
the light follows. It is helpful to think of a light ray as a narrow pencil of light, very much like a 
narrow, well-defined laser beam. For example, earlier in this module, when you observed the 
passage of a laser beam in a fish tank and visually traced the path of the beam from reflection to 
reflection inside the tank, you were, in effect, looking at a “light ray” representation of light in 
the tank. 

A.  Light rays and light waves 
Before we look more closely at the use of light rays in geometrical optics, we need to say a brief 
word about light waves and the geometrical connection between light rays and light waves. For 
most of us, wave motion is easily visualized in terms of water waves—such as those created on 
a quiet pond by a bobbing cork. See Figure 3-2a. The successive high points (crests) and low 
points (troughs) occur as a train of circular waves moving radially outward from the bobbing 
cork. Each of the circular waves represents a wave front. A wave front is defined here as a locus 
of points that connect identical wave displacements—that is, identical positions above or below 
the normal surface of the quiet pond. 



F U N D A M E N T A L S  O F  P H O T O N I C S  

78 

 

 
   (a)  Waves from a bobbing cork 

 
 

         (b)  Light rays and wave fronts 

  (c)  Changing wave fronts and bending light 
rays 

 

Figure 3-2  Waves and rays 

In Figure 3-2b, circular wave fronts are shown with radial lines drawn perpendicular to them 
along several directions. Each of the rays describes the motion of a restricted part of the wave 
front along a particular direction. Geometrically then, a ray is a line perpendicular to a series of 
successive wave fronts specifying the direction of energy flow in the wave. 

Figure 3-2c shows plane wave fronts of light bent by a lens into circular (spherical in three 
dimensions) wave fronts that then converge onto a focal point F. The same diagram shows the 
light rays corresponding to these wave fronts, bent by the lens to pass through the same focal 
point F. Figure 3-2c shows clearly the connection between actual waves and the rays used to 
represent them. In the study of geometrical optics, we find it acceptable to represent the 
interaction of light waves with plane and spherical surfaces—with mirrors and lenses—in terms 
of light rays. 

With the useful geometric construct of a light ray we can illustrate propagation, reflection, and 
refraction of light in clear, uncomplicated drawings. For example, in Figure 3-3a, the 
propagation of light from a “point source” is represented by equally spaced light rays emanating 
from the source. Each ray  indicates the geometrical path along which the light moves as it 
leaves the source. Figure 3-3b shows the reflection of several light rays at a curved mirror 
surface, and Figure 3-3c shows the refraction of a single light ray passing through a prism. 
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    (a)    (b)    (c) 

Figure 3-3  Typical light rays in (a) propagation, (b) reflection, and (c) refraction 

B.  Reflection of light from optical surfaces 
When light is incident on an interface between two transparent optical media—such as between 
air and glass or between water and glass—four things can happen to the incident light. 

• It can be partly or totally reflected at the interface. 

• It can be scattered in random directions at the interface. 

• It can be partly transmitted via refraction at the interface and enter the second medium. 

• It can be partly absorbed in either medium. 

In our introductory study of geometrical optics we shall consider only smooth surfaces that give 
rise to specular (regular, geometric) reflections (Figure 3-4a) and ignore ragged, uneven 
surfaces that give rise to diffuse (irregular) reflections (Figure 3-4b). 

  

            (a)  Specular reflection                        (b)  Diffuse reflection 

Figure 3-4  Specular and diffuse reflection 

In addition, we shall ignore absorption of light energy along the path of travel, even though 
absorption is an important consideration when percentage of light transmitted from source to 
receiver is a factor of concern in optical systems. 
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1.  The law of reflection: plane surface. When light reflects from a plane surface as shown 
in Figure 3-5, the angle that the reflected ray makes with the normal (line perpendicular to the 
surface) at the point of incidence is always equal to the angle the incident ray makes with the 
same normal. Note carefully that the incident ray, reflected ray, and normal always lie in the same 
plane. 

 

Figure 3-5  Law of reflection: Angle B equals angle A. 

The geometry of Figure 3-5 reminds us that reflection of light rays from a plane, smooth surface 
is like the geometry of pool shots “banked” along the wall of a billiard table. 

With the law of reflection in mind, we can see that, for the specular reflection shown earlier in 
Figure 3-4a, each of the incident, parallel rays reflects off the surface at the same angle, thereby 
remaining parallel in reflection as a group. In Figure 3-4b, where the surface is made up of 
many small, randomly oriented plane surfaces, each ray reflects in a direction different from its 
neighbor, even though each ray does obey the law of reflection at its own small surface segment. 

2.  Reflection from a curved surface. With spherical mirrors, reflection of light occurs at a 
curved surface. The law of reflection holds, since at each point on the curved surface one can 
draw a surface tangent and erect a normal to a point P on the surface where the light is incident, 
as shown in Figure 3-6. One then applies the law of reflection at point P just as was illustrated 
in Figure 3-5, with the incident and reflected rays making the same angles (A and B) with the 
normal to the surface at P. Note that successive surface tangents along the curved surface in 
Figure 3-6 are ordered (not random) sections of “plane mirrors” and serve—when smoothly 
connected—as a spherical surface mirror, capable of forming distinct images. 
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Figure 3-6  Reflection at a curved surface: Angle B equals angle A. 

Since point P can be moved anywhere along the curved surface and a normal drawn there, we 
can always find the direction of the reflected ray by applying the law of reflection. We shall 
apply this technique when studying the way mirrors reflect light to form images. 

Example 1 

Using the law of reflection, complete the ray-trace diagram for the four rays (a, b, c, d) incident on 
the curved surface shown at the left below, given the center of the curved surface is at point C. 

  
     Beginning of ray trace      Completion of  ray trace 

 
Solution: Draw a normal (shown dashed) from point C to each of the points P1, P2, P3, and P4, as 
shown above in the drawing at the right. At each point, draw the appropriate reflected ray (a ′, b′, 
c′, d ′) so that it makes an angle with its normal equal to the angle made by the incident ray (a, b, c, 
d) at that point. Note that ray d reflects back along itself since it is incident along the line of the 
normal from C to point P4. 
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C.  Refraction of light from optical interfaces 
When light is incident at an interface—the geometrical plane that separates one optical medium 
from another—it will be partly reflected and partly transmitted. Figure 3-7 shows a 
three-dimensional view of light incident on a partially reflecting surface (interface), being 
reflected there (according to the law of reflection) and refracted into the second medium. The 
bending of light rays at an interface between two optical media is called refraction. Before we 
examine in detail the process of refraction, we need to describe optical media in terms of an 
index of refraction. 

 

Figure 3-7  Reflection and refraction at an interface 

1.  Index of refraction.  The two transparent optical media that form an interface are 
distinguished from one another by a constant called the index of refraction, generally labeled 
with the symbol n. The index of refraction for any transparent optical medium is defined as the 
ratio of the speed of light in a vacuum to the speed of light in the medium, as given in 
Equation 3-1. 

 n c =  
v

  (3-1) 

where c = speed of light in free space (vacuum) 
 v = speed of light in the medium 
 n = index of refraction of the medium 

The index of refraction for free space is exactly one. For air and most gases it is very nearly one, 
so in most calculations it is taken to be 1.0. For other materials it has values greater than one. 
Table 3-1 lists indexes of refraction for common materials. 
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Table 3-1  Indexes of Refraction for Various Materials at 589 nm 
Substance n Substance n 

Air 1.0003 Glass (flint) 1.66 
Benzene 1.50 Glycerin 1.47 
Carbon Disulfide 1.63 Polystyrene 1.49 
Corn Syrup 2.21 Quartz (fused) 1.46 
Diamond 2.42 Sodium Chloride 1.54 
Ethyl Alcohol 1.36 Water 1.33 
Gallium Arsenide (semiconductor) 3.40 Ice 1.31 
Glass (crown) 1.52 Germanium 4.1 
Zircon 1.92 Silicon 3.5 

 

The greater the index of refraction of a medium, the lower the speed of light in that medium and 
the more light is bent in going from air into the medium. Figure 3-8 shows two general cases, 
one for light passing from a medium of lower index to higher index, the other from higher index 
to lower index. Note that in the first case (lower-to-higher) the light ray is bent toward the 
normal. In the second case (higher-to-lower) the light ray is bent away from the normal. It is 
helpful to memorize these effects since they often help one trace light through optical media in a 
generally correct manner. 
 

 
 

(a)  Lower to higher: bending toward normal (b)  Higher to lower: bending away from normal 

Figure 3-8  Refraction at an interface between media of refractive indexes n1 and n2 

2.  Snell’s law. Snell’s law of refraction relates the sines of the angles of incidence and 
refraction at an interface between two optical media to the indexes of refraction of the two 
media. The law is named after a Dutch astronomer, Willebrord Snell, who formulated the law in 
the 17th century. Snell’s law enables us to calculate the direction of the refracted ray if we know 
the refractive indexes of the two media and the direction of the incident ray. The mathematical 
expression of Snell’s law and an accompanying drawing are given in Figure 3-9. 
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Snell’s Law  

sin
sin

 
 
i
r

 = 
n
n

r

i

 , where 

I is the angle of incidence 

r is the angle of refraction 

ni is the index in the incident medium 

nr is the index in the refracting medium  

Figure 3-9  Snell’s law: formula and geometry 

Note carefully that both the angle of incidence (i) and refraction (r) are measured with respect to 
the surface normal. Note also that the incident ray, normal, and refracted ray all lie in the same 
geometrical plane. 

In practice Snell’s law is often written simply as 

 ni sin i = nr sin r  (3-2) 
 

Now let’s look at an example that make use of Snell’s law. 

Example 2 

In a handheld optical instrument used under water, light is incident from water onto the plane 
surface of flint glass at an angle of incidence of 45°. 

(a) What is the angle of reflection of light off the flint glass? 

(b) Does the refracted ray bend toward or away from the normal? 

(c) What is the angle of refraction in the flint glass? 

Solution: 
(a) From the law of reflection, the reflected light must head off at an angle of 45° with the 
normal. (Note: The angle of reflection is not dependent on the refractive indexes of the two 
media.) 

(b) From Table 3-1, the index of refraction is 1.33 for water and 1.63 for flint glass. Thus, 
light is moving from a lower to a higher index of refraction and will bend toward the normal. 
We know then that the angle of refraction r should be less than 45°. 

(c) From Snell’s law, Equation 3-2, we have: 

 ni sin i = nr sin r 

  where ni = 1.33, i = 45°, and ni = 1.63 

 Thus, sin r = 
1 33 45

1 63
. sin

.
°

 = 
( . )( . )

.
1 33 0 707

1 63
 = 0.577 
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 So r = sin−1(0.577) = 35.2° 

 The angle of refraction is about 35°, clearly less than 45°, just as was predicted in part (b). 

Note: The function sin−1 is of course the arcsin. We will use the sin−1 notation since that is what is 
found on scientific calculators. 

 

3.  Critical angle and total internal reflection. When light travels from a medium of 
higher index to one of lower index, we encounter some interesting results. Refer to Figure 3-10, 
where we see four rays of light originating from point O in the higher-index medium, each 
incident on the interface at a different angle of incidence. Ray 1 is incident on the interface at 
90° (normal incidence) so there is no bending. 

 

Figure 3-10  Critical angle and total internal reflection 

The light in this direction simply speeds up in the second medium (why?) but continues along 
the same direction. Ray 2 is incident at angle i and refracts (bends away from the normal) at 
angle r. Ray 3 is incident at the critical angle ic, large enough to cause the refracted ray bending 
away from the normal (N) to bend by 90°, thereby traveling along the interface between the two 
media. (This ray is trapped in the interface.) Ray 4 is incident on the interface at an angle 
greater than the critical angle, and is totally reflected into the same medium from which it 
came. Ray 4 obeys the law of reflection so that its angle of reflection is exactly equal to its angle 
of incidence. We exploit the phenomenon of total internal reflection when designing light 
propagation in fibers by trapping the light in the fiber through successive internal reflections 
along the fiber. We do this also when designing “retroreflecting” prisms. Compared with 
ordinary reflection from mirrors, the sharpness and brightness of totally internally reflected light 
beams is enhanced considerably. 

The calculation of the critical angle of incidence for any two optical media—whenever light is 
incident from the medium of higher index—is accomplished with Snell’s law. Referring to Ray 
3 in Figure 3-10 and using Snell’s law in Equation 3-2 appropriately, we have 

 ni sin ic = nr sin 90° 

where ni is the index for the incident medium, ic is the critical angle of incidence, nr is the index 
for the medium of lower index, and r = 90° is the angle of refraction at the critical angle. Then, 
since sin 90° = 1, we obtain for the critical angle, 
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ic = sin−1 
n
n

r

i

F
HG
I
KJ  

 
(3-3) 

 

Let’s use this result and Snell’s law to determine the entrance cone for light rays incident on the 
face of a clad fiber if the light is to be trapped by total internal reflection at the core-cladding 
interface in the fiber. 

Example 3 

A step-index fiber 0.0025 inch in diameter has a core index of 1.53 and a cladding index of 1.39. 
See drawing. Such clad fibers are used frequently in applications involving communication, sensing, 
and imaging. 

 

What is the maximum acceptance angle θm for a cone of light rays incident on the fiber face such 
that the refracted ray in the core of the fiber is incident on the cladding at the critical angle? 

Solution: First find the critical angle θc in the core, at the core-cladding interface. Then, from 
geometry, identify θr and use Snell’s law to find θm. 

(1) From Equation 3-3, at the core-cladding interface 

 θc = sin−1
 

1 39
1 53
.
.
F
H
I
K  = 65.3° 

(2) From right-triangle geometry, θr = 90 − 65.3 = 24.7° 

(3) From Snell’s law, at the fiber face, 

nair sin θm = ncore sin θr 

 and sin θm = 
n

n
core

air

F
HG
I
KJ  sin θr = 

1 53
1 00
.
.
F
H
I
K  sin (24.7°) 

 from which sin θm = 0.639 

 and  θm = sin−1 0.639 = 39.7° 

Thus, the maximum acceptance angle is 39.7° and the acceptance cone is twice that, or 2 θm = 79.4°. 
The acceptance cone indicates that any light ray incident on the fiber face within the acceptance 
angle will undergo total internal reflection at the core-cladding face and remain trapped in the fiber 
as it propagates along the fiber. 

 



B A S I C  G E O M E T R I C A L  O P T I C S  

87 

D.  Refraction in prisms 
Glass prisms are often used to bend light in a given direction as well as to bend it back again 
(retroreflection). The process of refraction in prisms is understood easily with the use of light 
rays and Snell’s law. Look at Figure 3-11a. When a light ray enters a prism at one face and exits 
at another, the exiting ray is deviated from its original direction. The prism shown is isosceles in 
cross section with apex angle A = 30° and refractive index n = 1.50. The incident angle θ and 
the angle of deviation δ are shown on the diagram.  

Figure 3-11b shows how the angle of deviation δ changes as the angle θ of the incident ray 
changes. The specific curve shown is for the prism described in Figure 3-11a. Note that δ goes 
through a minimum value, about 23° for this specific prism. Each prism material has its own 
unique minimum angle of deviation. 

 

 
   (a)    (b) 

Figure 3-11  Refraction of light through a prism 

1.  Minimum angle of deviation. It turns out that we can determine the refractive index of a 
transparent material by shaping it in the form of an isosceles prism and then measuring its 
minimum angle of deviation. With reference to Figure 3-11a, the relationship between the 
refractive index n, the prism apex angle A, and the minimum angle of deviation δm is given by  

 

n = 
sin 

2

sin 
2

A

A

m
+F
HG

I
KJ

δ

 

 

(3-4) 

 

where both A and δm are measured in degrees. 

The derivation of Equation 3-4 is straightforward, but a bit tedious. Details of the derivation—
making use of Snell’s law and geometric relations between angles at each refracting surface—
can be found in most standard texts on geometrical optics. (See suggested references at the end 
of the module.)  Let’s show how one can use Equation 3-4 in Example 4 to determine the index 
of refraction of an unknown glass shaped in the form of a prism. 
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Example 4 

A glass of unknown index of refraction is shaped in the form of an isosceles prism with an apex 
angle of 25°. In the laboratory, with the help of a laser beam and a prism table, the minimum angle 
of deviation for this prism is measured carefully to be 15.8°. What is the refractive index of this 
glass material?  

Solution: Given that δm = 15.8° and A = 25°, we use Equation 3-4 to calculate the refractive index. 

  n = 
sin 

sin

A

A

m
+F
HG

I
KJ

FH IK

δ

2

 
2

 = 
sin

sin

 
25

2

 
25

°+ °

°

FH IK
FH IK

15 8

2

.

 = 
sin 
sin

20 4. °

°

( )
( ) 12.5

 = 
0 3486
0 2164

.

.
 

  n = 1.61 

(Comparing this value with refractive indexes given in Table 3-1, the unknown glass is probably 
flint glass.) 

 

2.  Dispersion of light. Table 3-1 lists indexes of refraction for various substances 
independent of the wavelength of the light. In fact, the refractive index is slightly wavelength 
dependent. For example, the index of refraction for flint glass is about 1% higher for blue light 
than for red light. The variation of refractive index n with wavelength λ is called dispersion. 
Figure 3-12a shows a normal dispersion curve of nλ versus λ for different types of optical glass. 
Figure 3-12b shows the separation of the individual colors in white light—400 nm to 700 nm—
after passing through a prism. Note that nλ decreases from short to long wavelengths, thus 
causing the red light to be less deviated than the blue light as it passes through a prism. This 
type of dispersion that accounts for the colors seen in a rainbow, the “prism” there being the 
individual raindrops. 

 

 

(a) Refraction by a prism      (b) Optical glass dispersion curves  

Figure 3-12  Typical dispersion curves and separation of white light after refraction by a prism 
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3.  Special applications of prisms. Prisms that depend on total internal reflection are 
commonly used in optical systems, both to change direction of light travel and to change the 
orientation of an image. While mirrors can be used to achieve similar ends, the reflecting faces 
of a prism are easier to keep free of contamination and the process of total internal reflection is 
capable of higher reflectivity. Some common prisms in use today are shown in Figure 3-13, 
with details of light redirection and image reorientation shown for each one. If, for example, the 
Dove prism in Figure 3-13b is rotated about its long axis, the image will also be rotated. 

 

 

 

 

 

 

 

 

 

 

 

(a) Right-angle prism 

(b) Dove prism 

(c) Penta prism 

(d) Porro prism 

Figure 3-13  Image manipulation with refracting prisms 

The Porro prism, consisting of two right-angle prisms, is used in binoculars, for example, to 
produce erect final images and, at the same time, permit the distance between the object-
viewing lenses to be greater than the normal eye-to-eye distance, thereby enhancing the 
stereoscopic effect produced by ordinary binocular vision. 

II.  IMAGE FORMATION WITH MIRRORS 
Mirrors, of course, are everywhere—in homes, auto headlamps, astronomical telescopes, and 
laser cavities, and many other places. Plane and spherical mirrors are used to form three-
dimensional images of three-dimensional objects. If the size, orientation, and location of an 
object relative to a mirror are known, the law of reflection and ray tracing can be used to locate 
the image graphically. Appropriate mathematical formulas can also be used to calculate the 
locations and sizes of the images formed by mirrors. In this section we shall use both graphical 
ray tracing and formulas. 
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A.  Images formed with plane mirrors 
Images with mirrors are formed when many nonparallel rays from a given point on a source are 
reflected from the mirror surface, converge, and form a corresponding image point. When this 
happens, point by point for an extended object, an image of the object, point by point, is formed. 
Image formation in a plane mirror is illustrated in several sketches shown in Figure 3-14. 
 

  
    (a)  Imaging a point surface     (b)  Imaging an extended object 

  
    (c)  Image is same size as object.     (d)  Multiple images of point with inclined mirrors 

Figure 3-14  Image formation in a plane mirror 

In Figure 3-14a, point object S sends nonparallel rays toward a plane mirror, which reflects 
them as shown. The law of reflection ensures that pairs of triangles like SNP and S′NP are 
equal, so that all reflected rays appear to originate at the image point S′, which lies along the 
normal line SN, and at such depth that the image distance S′N equals the object distance SN. 
The eye sees a point image at S′ in exactly the same way it would see a real point object placed 
there. Since the actual rays do not exist below the mirror surface, the image is said to be a 
virtual image. The image S′ cannot be projected on a screen as in the case of a real image. An 
extended object, such as the arrow in Figure 3-14b, is imaged point by point by a plane mirror 
surface in similar fashion. Each object point has its image point along its normal to the mirror 
surface and as far below the reflecting surface as the object point lies above the surface. Note 
that image position does not depend on the position of the eye. 

The construction in Figure 3-14b also makes clear that the image size is identical to the object 
size, giving a magnification of unity. In addition, the transverse orientations of object and image 
are the same. A right-handed object, however, appears left-handed in its image. In Figure 3-14c, 
where the mirror does not lie directly below the object, the mirror plane may be extended to 
determine the position of the image as seen by an eye positioned to receive reflected rays 
originating at the object. Figure 3-14d illustrates multiple images of a point object O formed by 
two perpendicular mirrors. Each image, I and I2, results from a single reflection in one of the 
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two mirrors, but a third image I3 is also present, formed by sequential reflections from both 
mirrors. All parts of Figure 3-14 and the related discussion above should be understood clearly 
because they are fundamental to the optics of images. Look at Example 5. 

Example 5 

Making use of the law of reflection and the conclusions drawn from Figure 3-14, draw the image of 
the letter L positioned above a plane mirror as shown below in (a). 

 
                 (a)  Object                                              (b)  Image trace 
 

Solution: Make use of the fact that each point on the image is as far below the mirror—along a 
line perpendicular to the mirror—as the actual object point is above the mirror. Indicate key points 
on the object and locate corresponding points on the image. Sketch in the image as shown in (b). 

 

B.  Images formed with spherical mirrors 
As we showed earlier in Figure 3-6, the law of reflection can be used to determine the direction 
along which any ray incident on a spherical mirror surface will be reflected. Using the law of 
reflection, we can trace rays from any point on an object to the mirror, and from there on to the 
corresponding image point. This is the method of graphical ray tracing. 

1.  Graphical ray-trace method. To employ the method of ray tracing, we agree on the 
following: 

• Light will be incident on a mirror surface initially from the left. 

• The axis of symmetry normal to the mirror surface is its optical axis. 

• The point where the optical axis meets the mirror surface is the vertex. 

To locate an image we use two points common to each mirror surface, the center of curvature C 
and the focal point F. They are shown in Figure 3-15, with the mirror vertex V, for both a 
concave and a convex spherical mirror. 
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   (a)  Concave mirror surface (b)  Convex mirror surface 

Figure 3-15  Defining points for concave and convex mirrors 

The edges of concave mirrors always bend toward the oncoming light. Such mirrors have their 
center of curvature C and focal point F located to the left of the vertex as seen in Figure 3-15a. 
The edges of convex mirrors always bend away from the oncoming light, and their center of 
curvature C and focal point F are located to the right of the vertex. See Figure 3-15b. 

The important connection between parallel rays and the focal points for mirror surfaces is 
shown in Figure 3-16 a, b. Parallel rays are light rays coming from a very distant source (such 
as the sun) or from a collimated laser beam. The law of reflection, applied at each point on the 
mirror surface where a ray is incident, requires that the ray be reflected so as to pass through a 
focal point F in front of the mirror (Figure 3-16a) or be reflected to appear to come from a focal 
point F behind the mirror (Figure 3-16b). Notice that a line drawn from the center of curvature 
C to any point on the mirror is a normal line and thus bisects the angle between the incident and 
reflected rays. As long as the transverse dimension of the mirror is not too large, simple 
geometry shows that the point F, for either mirror, is located at the midpoint between C and F, 
so that the distance FV is one-half the radius of curvature CV. The distance FV is called the 
focal length and is commonly labeled as f. 

  
  (a)  Concave mirror      (b)  Convex mirror 

Figure 3-16  Parallel rays and focal points 
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2.  Key rays used in ray tracing. Figure 3-17 shows three key rays—for each mirror—that 
are used to locate an image point corresponding to a given object point. They are  

 

Figure 3-17  Key rays for graphical ray tracing with spherical mirrors 

labeled 1, 2, and 3. Any two, drawn from object point P, will locate the corresponding image 
point P′. In most cases it is sufficient to locate one point, like P′, to be able to draw the entire 
image. Note carefully, with reference to Figure 3-17a, b, the following facts: 

For a concave mirror: 
• The ray from object point P parallel to the axis, such as ray 1, reflects from the mirror 

and passes through the focal point F (labeled ray 1′). 

• The ray from P passing through the focal point F, such as ray 2, reflects from the mirror 
as a ray parallel to the axis (labeled ray 2′). 

• The ray from P passing through the center of curvature C, such as ray 3, reflects back 
along itself (labeled ray 3′). 

• Reflected rays 1′, 2′, and 3′ converge to locate point P′ on the image. This image is a 
real image that can be formed on a screen located there. 

For a convex mirror: 
• The ray from object point P, parallel to the axis, such as ray 1, reflects from the mirror 

as if to come from the focal point F behind the mirror (labeled ray 1′). 

• The ray from P, such as ray 2, headed toward the focal point F behind the mirror, 
reflects from the mirror in a direction parallel to the optical axis (labeled ray 2′). 

• The ray from P, such as ray 3, headed toward the center of curvature C behind the 
mirror, reflects back along itself (labeled ray 3′). 

• Rays 1′, 2′, and 3′ diverge after reflection. A person looking toward the mirror intercepts 
the diverging rays and sees them appearing to come from their common intersection 
point P′, behind the mirror. The image is virtual since it cannot be formed on a screen 
placed there. 
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Example 6 

The passenger-side mirror on an automobile is a convex mirror. It provides the driver with a wide 
field of view, but significantly reduced images. Assume that object OP is part of an automobile 
trailing the driver’s car. See diagram below. Use three key rays to locate the reduced, virtual image 
of the trailing auto. 

Solution: Using key rays 1, 2, and 3 incident on the mirror from point P on object OP, in 
conjunction with points C and F, draw the appropriate reflected rays, as show below, to locate P′ on 
image IP′. 

 
 

The three reflected rays 1′, 2′, and 3′ diverge after reflection. They appear to come from a common 
point P′ behind the mirror. This locates virtual image IP′, reduced in size, about one-third as large 
as object OP. As a result, drivers are always cautioned that images seen in the passenger-side mirror 
are actually NEARER than they appear to be. 

 

C.  Mirror formulas for image location 
In place of the graphical ray-tracing methods described above, we can use formulas to calculate 
the image location. We shall derive below a “mirror formula” and then use the formula to 
determine image location. The derivation is typical of those found in geometrical optics, and is 
instructive in its combined use of algebra, geometry, and trigonometry. (If the derivation is not 
of interest to you, you may skip to the next section, where the derived formula is used in typical 
calculations. Be sure, though, that you learn about the sign convention discussed below.) 

1.  Derivation of the mirror formula. The drawing we need to carry out the derivation is 
shown in Figure 3-18. The important quantities are the object distance p, the image distance q, 
and the radius of curvature r. Both p and q are measured relative to the mirror vertex, as shown, 
and the sign on r will indicate whether the mirror is concave or convex. All other quantities in 
Figure 3-18 are used in the derivation but will not show up in the final “mirror formula.” 
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Figure 3-18  Basic drawing for deriving the mirror formula 

The mirror shown in Figure 3-18 is convex with center of curvature C on the right. Two rays of 
light originating at object point O are drawn, one normal to the convex surface at its vertex V 
and the other an arbitrary ray incident at P. The first ray reflects back along itself; the second 
reflects at P as if incident on a plane tangent at P, according to the law of reflection. Relative to 
each other, the two reflected rays diverge as they leave the mirror. The intersection of the two 
rays (extended backward) determines the image point I corresponding to object point O. The 
image is virtual and located behind the mirror surface. 

Object and image distances measured from the vertex V are shown as p and q, respectively. 
A perpendicular of height h is drawn from P to the axis at Q. We seek a relationship between p 
and q that depends on only the radius of curvature r of the mirror. As we shall see, such a 
relation is possible only to a first-order approximation of the sines and cosines of angles such as 
α and ϕ made by the object and image rays at various points on the spherical surface. This 
means that, in place of expansions of sin ϕ and cos ϕ in series as shown here, 

 sin
! !

ϕ ϕ
ϕ ϕ

= − + −
3 5

3 5
 

 cos
! !

ϕ
ϕ ϕ

= − + −1
2 4

2 4
 

we consider the first terms only and write 

 sin ϕ ≅ ϕ   and   cos ϕ ≅ 1,   so that   tan ϕ = sin
cos

ϕ
ϕ

 ≅ ϕ 

These relations are accurate to 1% or less if the angle ϕ is 10° or smaller. This approximation 
leads to first-order (or Gaussian) optics, after Karl Friedrich Gauss, who in 1841 developed the 
foundations of this subject. Returning now to the problem at hand—that of relating p, q, and r—
notice that two angular relationships may be obtained from Figure 3-18, because the exterior 
angle of a triangle equals the sum of its interior angles. Thus, 

 θ = α + ϕ in ∆OPC   and   2θ = α + α′   in ∆OPI 

which combine to give 

 α − α′ = 2ϕ 
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Using the small-angle approximation, the angles α, α′, and ϕ above can be replaced by their 
tangents, yielding 

 h
p

h
q

h
r

− = −2  

Note that we have neglected the axial distance VQ, small when ϕ is small. Cancellation of h 
produces the desired relationship,  

 1 1 2
p q r

− = −  
 

(3-5) 

 

If the spherical surface is chosen to be concave instead, the center of curvature will be to the 
left. For certain positions of the object point O, it is then possible to find a real image point, also 
to the left of the mirror. In these cases, the resulting geometric relationship analogous to 
Equation 3-5 consists of the same terms, but with different algebraic signs, depending on the 
sign convention employed. We can choose a sign convention that leads to a single equation, the 
mirror equation, valid for both types of mirrors. It is Equation 3-6. 

 1 1 2
p q r

+ = −  
 

(3-6) 

 

2.  Sign convention. The sign convention to be used in conjunction with Equation 3-6 and 
Figure 3-18 is as follows. 

• Object and image distances p and q are both positive when located to the left of the 
vertex and both negative when located to the right. 

• The radius of curvature r is positive when the center of curvature C is to the left of the 
vertex (concave mirror surface) and negative when C is to the right (convex mirror 
surface). 

• Vertical dimensions are positive above the optical axis and negative below. 

In the application of these rules, light is assumed to be directed initially, as we mentioned 
earlier, from left to right  According to this sign convention, positive object and image distances 
correspond to real objects and images, and negative object and image distances correspond to 
virtual objects and images. Virtual objects occur only with a sequence of two or more reflecting 
or refracting elements. 

3.  Magnification of a mirror image. Figure 3-19 shows a drawing from which the 
magnification—ratio of image height hi to object height ho—can be determined. Since angles θi, 
θr, and α are equal, it follows that triangles VOP and VIP′ are similar. Thus, the sides of the two 
triangles are proportional and one can write 

 
h
h

q
p

i

o

=  

This gives at once the magnification m to be 

 m
h
h

q
p

i

o

≡ =  
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When the sign convention is taken into account, one has, for the general case, a single equation, 
Equation 3-7, valid for both convex and concave mirrors. 

 
m q

p
= −  

 
(3-7) 

 

If, after calculation, the value of m is positive, the image is erect. If the value is negative, the 
image is inverted. 

 

Figure 3-19  Construction for derivation of mirror magnification formula 

Let us now use the mirror formulas in Equations 3-6 and 3-7, and the sign convention, to locate 
an image and determine its size. 

Example 7 

A meterstick lies along the optical axis of a convex mirror of focal length 40 cm, with its near end 
60 cm from the mirror surface. Five-centimeter toy figures stand erect on both the near and far ends 
of the meterstick. (a) How long is the virtual image of the meterstick? (b) How tall are the toy 
figures in the image, and are they erect or inverted? 

 
 

Solution: Use the mirror equation 
1 1 2
p q r

+ = −  twice, once for the near end and once for the far 

end of the meterstick. Use the magnification equation m
q
p

= −  for each toy figure. 
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(a) Near end: Sign convention gives p = +60 cm, r = 2f = −(2 × 40) = −80 cm 

          ∴ 
1

60
1 2

80
+ = −

q
n

 , so qn = −24 cm 

  Negative sign indicates image is virtual, 24 cm to the right of V. 

 Far end: p = +160 cm, r = −80 cm 

  
1

160
1 1

40
+ = −

q
f

 , so qf = −32 cm 

  Far-end image is virtual, 32 cm to the right of V. 

          ∴ Meterstick image is 32 cm − 24 cm = 8 cm long. 

(b) Near-end toy figure: 

  mn = 
−

=
− −

= +
( )q

p
24

60
0 4.  (Image is erect since m is positive.) 

  The toy figure is 5 cm × 0.4 = 2 cm tall, at near end of the meterstick image. 

 Far-end toy figure: 

  mf = 
−

=
− −

= +
( )q

p
32

160
0 2.      (Image is erect since m is positive.) 

  The toy figure is 5 cm × 0.2 = 1 cm tall, at far end of the meterstick image. 

 

III.  IMAGE FORMATION WITH LENSES 
Lenses are at the heart of many optical devices, not the least of which are cameras, microscopes, 
binoculars, and telescopes. Just as the law of reflection determines the imaging properties of 
mirrors, so Snell’s law of refraction determines the imaging properties of lenses. Lenses are 
essentially light-controlling elements, used primarily for image formation with visible light, but 
also for ultraviolet and infrared light. In this section we shall look first at the types and 
properties of lenses, then use graphical ray-tracing techniques to locate images, and finally use 
mathematical formulas to locate the size, orientation, and position of images in simple lens 
systems. 

A.  Function of a lens 
A lens is made up of a transparent refracting medium, generally of some type of glass, with 
spherically shaped surfaces on the front and back. A ray incident on the lens refracts at the front 
surface (according to Snell’s law) propagates through the lens, and refracts again at the rear 
surface. Figure 3-20 shows a rather thick lens refracting rays from an object OP to form an 
image O′P′. The ray-tracing techniques and lens formulas we shall use here are based again on 
Gaussian optics, just  as they were for mirrors. 
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Figure 3-20  Refraction of light rays by a lens 

As we have seen, Gaussian optics—sometimes called paraxial optics—arises from the basic 
approximations sin ϕ ≅ φ, tan ϕ ≅ φ, and cos ϕ ≅ 1. These approximations greatly simplify ray 
tracing and lens formulas, but they do restrict the angles the light rays make with the optical 
axis to rather small values of 20° or less. 

B.  Types of lenses 
If the axial thickness of a lens is small compared with the radii of curvature of its surfaces, it 
can be treated as a thin lens. Ray-tracing techniques and lens formulas are relatively simple for 
thin lenses. If the thickness of a lens is not negligible compared with the radii of curvature of its 
faces, it must be treated as a thick lens. Ray-tracing techniques and lens-imaging formulas are 
more complicated for thick lenses, where computer programs are often developed to trace the 
rays through the lenses or make surface-by-surface calculations. In this basic introduction of 
geometrical optics, we shall deal with only thin lenses. 

1.  Converging and diverging thin lenses. In Figure 3-21, we show the shapes of several 
common “thin” lenses. Even though a “thickness” is shown, the use of thin lenses assumes that 
the rays simply refract at the front and rear faces without a translation through the lens medium. 
The first three lenses are thicker in the middle than at the edges and are described as converging 
or positive lenses. They are converging because they cause parallel rays passing through them to 
bend toward one another. Such lenses give rise to positive focal lengths. The last three lenses 
are thinner in the middle than at the edges and are described as diverging or negative lenses. In 
contrast with converging lenses, they cause parallel rays passing through them to spread as they 
leave the lens. These lenses give rise to negative focal lengths. In Figure 3-21, names associated 
with the different shapes are noted. 

 

Figure 3-21  Shapes of common thin lenses 
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2.  Focal points of thin lenses.  Just as for mirrors, the focal points of lenses are defined in 
terms of their effect on parallel light rays and plane wave fronts. Figure 3-22 shows parallel 
light rays and their associated plane wave fronts incident on a positive lens (Figure 3-22a) and a 
negative lens (Figure 3-22b). For the positive lens, refraction of the light brings it to focal point 
F (real image) to the right of the lens. For the negative lens, refraction of the light causes it to 
diverge as if it is coming from focal point F (virtual image) located to the left of the lens. Note 
how the plane wave fronts are changed to converging spherical wave fronts by the positive lens 
and to diverging spherical wave fronts by the negative lens. This occurs because light travels 
more slowly in the lens medium than in the surrounding air, so the thicker parts of the lens 
retard the light more than do the thinner parts. 

  
(a)  Positive lens (b)  Negative lens 

Figure 3-22  Focal points for positive and negative lenses 

Recall that, for mirrors, there is but a single focal point for each mirror surface since light 
remains always on the same side of the mirror. For thin lenses, there are two focal points, 
symmetrically located on each side of the lens, since light can approach from either side of the 
lens. The sketches in Figure 3-23 indicate the role that the two focal points play, for positive 
lenses (Figure 3-23a) and negative lenses (Figure 3-23b). Study these figures carefully. 

(a)  

(b)  

Figure 3-23  Relationship of light rays to right and left focal points in thin lenses 
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3.  f-number and numerical aperture of a lens. The size of a lens determines its light-
gathering power and, consequently, the brightness of the image it forms. Two commonly used 
indicators of this special characteristic of a lens are called the f-number and the numerical 
aperture. 

The f-number, also referred to as the relative aperture and the f/stop, is defined simply as the 
ratio of the focal length f of the lens, to its diameter D, as given in Equation 3-8. 
 

 f-number = f
D

  
(3-8) 

 

For example, a lens of focal length 4 cm stopped down to an aperture of 0.5 cm has an f-number 
of 4/0.5 = 8. Photographers usually refer to this situation as a lens with an f/stop of f/8. Before 
the advent of fully automated cameras (“point and shoot”), a photographers would routinely 
select an aperture size for a given camera lens⎯(thereby setting the f/stop), a shutter speed, and 
a proper focus to achieve both the desired image brightness and sharpness. 

Table 3-2 lists the usual choices of f/stops (f-numbers) available on cameras and the 
corresponding image irradiance or “brightness”⎯in watts per square meter. The listing gives 
the irradiance E0 as the value for an f/stop of 1 and shows how the image irradiance decreases as 
the lens is “stopped down,” that is, as the adjustable aperture size behind the camera lens is 
made smaller. From Equation 3-8, it should be clear that, for a given camera lens of focal length 
f, the f/stop or f-number increases as D decreases, that is, as the aperture size decreases. Clearly 
then, increasing the f-number of a lens decreases its light-gathering power. 

Table 3-2. Relative Image Irradiance (Brightness)  
as a Function of f /stop Setting 

f /stop or f-number Relative Image Irradiance 
in watts/m2 

1 E0 
1.4 E0/2 
2 E0/4 
2.8 E0/8 
4 E0/16 
5.6 E0/32 
8 E0/64 
11 E0/128 
16 E0/256 
22 E0/512 

 

Since the total exposure in joules/m2 on the film is the product of the irradiance in joules/(m2-s) 
and the exposure time (shutter speed) in seconds, a desirable film exposure can be obtained in a 
variety of ways. Accordingly, if a particular film⎯whose speed is described by an ASA 
number⎯is perfectly exposed by light from a particular scene with a shutter speed of 1/50 
second and an f/stop of f/8 (irradiance equals E0/64 from Table 3-2), it will also be perfectly 
exposed by any other combination that gives the same total exposure. For example, by choosing 
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a shutter speed of 1/100 second and an f/stop of f/5.6, the exposure time is cut in half while the 
irradiance (E0/32) is doubled, thereby leaving no net change in the film exposure (J/m2). 

The numerical aperture is another important design parameter for a lens, related directly to how 
much light the lens gathers. If the focal length of a design lens increases and its diameter 
decreases, the solid angle (cone) of useful light rays from object to image for such a lens 
decreases. For example, the concept of a numerical aperture finds immediate application in the 
design of the objective lens (the lens next to the specimen under observation) for a microscope, 
as we show below. Light-gathering capability is crucial for microscopes. 

Figure 3-24 depicts the light-gathering power of a lens relative to a point O on a specimen 
covered by a glass slide. Lens L is the objective lens of a microscope focused on the specimen. 
On the right side of the symmetry axis of the lens, the light-gathering power of the lens⎯with 
air between the cover slide and the lens⎯is depicted in terms of half-angle αair. On the left side, 
by contrast, the increased light-gathering power of the lens⎯with oil situated between the cover 
slide and the lens⎯is shown in terms of the larger half-angle αoil. The oil is chosen so as to 

 

Figure 3-24  Light-gathering power of oil-immersion and air-immersion lens, showing that αoil is 
greater than αair 

have an index of refraction (n0) very near that of the cover slide (ng) so that little or no refraction 
occurs for limiting ray 2 at the glass-oil interface. Consequently the half-angle αoil is greater 
than the half-angle αair. As Figure 3-24 shows, ray 1 suffers refraction at the glass-air interface, 
thereby restricting the cone of rays accepted by the lens to the smaller half-angle αair. 

The numerical aperture of a lens is defined so as to exhibit the difference in solid angles (cones) 
of light accepted, for example, by an “oil-immersion” arrangement versus an air-immersion 
setup. 

The definition of numerical aperture (N.A.) is given in Equation 3-9 as 

 N.A. = n sin α  (3-9) 
 

where n is the index of refraction of the intervening medium between object and lens and α is 
the half-angle defined by the limiting ray (αair or αoil in Figure 3-24). The “light-gathering” 
power of the microscope’s objective lens is thus increased by increasing the refractive index of 
the intervening medium. 
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In addition, the numerical aperture is closely related to the acceptance angle discussed in 
Example 3 for both graded-index and step-index optical fibers, as will be shown in Module 1-7, 
Optical Waveguides and Fibers. Since the rays entering the fiber face are in air, the numerical 
aperture N.A. is equal simply to N.A. = sin α. 

It is shown in most basic books on optics (see references listed at end of this module) that image 
brightness is dependent on values of the f-number or numerical aperture, in accordance with the 
following proportionalities: 

 image brightness  ∝  1
( f-number)2  

 image brightness  ∝  (N.A.)2 

In summary, one can increase the light-gathering power of a lens and the brightness of the 
image formed by a lens by decreasing the f-number of the lens (increasing lens diameter) or by 
increasing the numerical aperture of the lens (increasing the refraction index and thus making 
possible a larger acceptance angle). 

C.  Image location by ray tracing 
To locate the image of an object formed by a thin lens, we make use of three key points for the 
lens and associate each of them with a defining ray. The three points are the left focal point F, 
the right focal point F′, and the lens vertex (center) V. In Figure 3-25 the three rays are shown 
locating an image point P′ corresponding to a given object point P, for both a positive and a 
negative lens. The object is labeled OP and the corresponding image IP′. The defining rays are 
labeled to show clearly their connection to the points F, F′, and V. In practice, of course, only 
two of the three rays are needed to locate the desired image point. Note also that the location of 
image point P′ is generally sufficient to sketch in the rest of the image IP′, to correspond with 
the given object OP. 

 
 

 

Figure 3-25  Ray diagrams for image formation by positive and negative lenses 
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The behavior of rays 1 and 2—connected with the left and right focal points for both the 
positive and negative lenses—should be apparent from another look at Figure 3-23. The 
behavior of ray 3—going straight through the lens at its center V—is a consequence of assuming 
that the lens has zero thickness. Note, in fact, that, for both Figures 3-23 and 3-25, all the 
bending is assumed to take place at the dashed vertical line that splits the drawn lenses in half. 
Also, it should be clear in Figure 3-25 that the positive lens forms a real image while the 
negative lens forms a virtual image. 

One can apply the principles of ray tracing illustrated in Figure 3-25 to a train of thin lenses. 
Figure 3-26 shows a ray trace through an “optical system” made up of a positive and a negative 
lens. For accuracy in drawing, a common practice used here is to show the positive lens as a 
vertical line with normal arrowheads and the negative lens as a vertical line with inverted 
arrowheads, and to show all ray bending at these lines. Note that the primary object is labeled 
RO1 (real object 1) and its image formed by the positive lens is labeled RI1 (real image 1). 
The image RI1 then serves as a real object (RO2) for the negative lens, leading finally to a virtual 
image VI2. 

Test your understanding of ray tracing through thin lenses by accounting for each numbered ray 
drawn in the figure. What happens to rays 1 and 3 relative to the negative lens? Why are 
rays 4 and 5 introduced? Is this a “fair” practice? 

 

Figure 3-26  Ray diagram for image formation through two lenses 

D.  Lens formulas for thin lenses 
As with mirrors, convenient formulas can be used to locate the image mathematically. The 
derivation of such formulas—as was carried out for spherical mirrors in the previous section—
can be found in most texts on geometrical optics. The derivation essentially traces an arbitrary 
ray geometrically and mathematically from an object point through the two surfaces of a thin 
lens to the corresponding image point. Snell’s law is applied for the ray at each spherical 
refracting surface. The details of the derivation involve the geometry of triangles and the 
approximations mentioned earlier—sin ϕ ≅ φ, tan ϕ ≅ φ, and cos ϕ ≅ 1—to simplify the final 
results. Figure 3-27 shows the essential elements that show up in the final equations, relating 
object distance p to image distance q, for a lens of focal length f with radii of curvature r1 and r2 
and refractive index ng. For generality, the lens is shown situated in an arbitrary medium of 
refractive index n. If the medium is air, then, of course, n = 1. 
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Figure 3-27  Defining quantities for image formation with a thin lens 

1.  Equations for thin lens calculations. The thin lens equation is given by Equation 3-10. 

 1 1 1
p q f
+ =  

 
(3-10) 

 

where p is the object distance (from object to lens vertex V ) 

 q is the image distance (from image to lens vertex V ) 

    and f is the focal length (from either focal point F or F′ to the lens vertex V ) 

For a lens of refractive index ng situated in a medium of refractive index n, the relationship 
between the parameters n, ng, r1, r2 and the focal length f is given by the lensmaker’s equation in 
Equation 3-11. 

 1 1 1

1 2
f

n n

n r r
g=
−F
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I
KJ −
F
HG
I
KJ

 
(3-11) 

 

where n is the index of refraction of the surrounding medium 

 ng is the index of refraction of the lens materials 

 r1 is the radius of curvature of the front face of the lens 

 r2 is the radius of curvature of the rear face of the lens 

The magnification m produced by a thin lens is given in Equation 3-12. 

 
m

h
h

q
p

i

o

= = −
 

(3-12) 

 

where m is the magnification (ratio of image size to object size) 

 hi is the transverse size of the image 

 ho is the transverse size of the object 

 p and q are object and image distance respectively 

2.  Sign convention for thin lens formulas. Just as for mirrors, we must agree on a sign 
convention to be used in the application of Equations 3-10, 3-11, and 3-12. It is: 

• Light travels initially from left to right toward the lens. 
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• Object distance p is positive for real objects located to the left of the lens and negative 
for virtual objects located to the right of the lens. 

• Image distance q is positive for real images formed to the right of the lens and negative 
for virtual images formed to the left of the lens. 

• The focal length f is positive for a converging lens, negative for a diverging lens. 

• The radius of curvature r is positive for a convex surface, negative for a concave surface. 

• Transverse distances (ho and hi) are positive above the optical axis, negative below. 

Now let’s apply Equations 3-10, 3-11, and 3-12 in several examples, where the use of the sign 
convention is illustrated and where the size, orientation, and location of a final image are 
determined. 

Example 8 

A double-convex thin lens such as that shown in Figure 3-21 can be used as a simple “magnifier.”  
It has a front surface with a radius of curvature of 20 cm and a rear surface with a radius of 
curvature of 15 cm. The lens material has a refractive index of 1.52. Answer the following questions 
to learn more about this simple magnifying lens. 

(a) What is its focal length in air? 

(b) What is its focal length in water (n = 1.33)? 

(c) Does it matter which lens face is turned toward the light? 

(d) How far would you hold an index card from this lens to form a sharp image of the sun on 
the card? 

Solution: 
(a) Use the lensmaker’s equation. With the sign convention given, we have ng = 1.52, n = 

1.00, r1 = +20 cm, and r2 = − 15 cm. Then 

1 1 1 1 52 1
1

1
20

1
15

0 0607
1 2

f

n n

n r r
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−

− =
−

−
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K
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I
K

.
.  

 So f = +16.5 cm (a converging lens, so the sign is positive, as it should be) 

(b) 
1 1 52 1 33

1 33
1

20
1
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0 0167
f
=

−
−
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I
K

. .
.

.  

 f = 60 cm (converging but less so than in air) 

(c) No, the magnifying lens behaves the same, having the same focal length, no matter which 
surface faces the light. You can prove this by reversing the lens and repeating the calculation 
with Equation 3-11. Results are the same. But note carefully, reversing a thick lens changes its 
effect on the light passing through it. The two orientations are not equivalent. 
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(d) Since the sun is very far away, its light is collimated (parallel rays) as it strikes the lens 
and will come to a focus at the lens focal point. Thus, one should hold the lens about 16.5 cm 
from the index card to form a sharp image on the card. 

Example 9 

A two-lens system is made up of a 
converging lens followed by a 
diverging lens, each of focal length 
15 cm. The system is used to form an 
image of a short nail, 1.5 cm high, 
standing erect, 25 cm from the first  
lens. The two lenses are separated by a distance of 60 cm. See accompanying diagram. (Refer to 
Figure 3-26 for a ray-trace diagram of what’s going on in this problem.) 

Locate the final image, determine its size, and state whether it is real or virtual, erect or inverted. 
Solution: We apply the thin lens equations to each lens in turn, making use of the correct sign 
convention at each step. 

Lens L1: 
1 1 1 1

25
1 1

15
1 1 1 1

p q f
or

q
+ = + =        (f1 is + since lens L1 is converging.) 

 q1 = +37.5 cm (Since the sign is positive, the image is real and located 37.5 cm to the 
right of lens L1. 

Lens L2: 
1 1 1

2 2 2
p q f

+ =   where p2 = (60 − 37.5) = 22.5 cm 

Since the first image, a distance q1 from L1, serves as the object for the lens L2, this object is to the 
left of lens L2, and thus its distance p2 is positive. The focal length for L2 is negative since it is a 
diverging lens. So, the thin lens equation becomes 

1
22 5

1 1
15

2
.
+ =

−q
,  giving q2 = −9cm 

 
Since q2 is negative, it locates a virtual image, 9 cm to the left of lens L2. (See Figure 3-26.) 

The overall magnification for the two-lens system is given by the combined magnification of the 
lenses. Then 

m m m
q

p

q

psys
= × = − − = − −

−
= −

F
HG
I
KJ
F
HG
I
KJ
F
H
I
K
F
H
I
K1 2

1

1

2

2

37 5
25

9
22 5

0 6
.

.
.

 

Thus, the final image is inverted (since overall magnification is negative) and is of final size  
(0.6 × 1.5 cm) = 0.9 cm. 
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Laboratory 
In this laboratory you will perform the following simple experiments with prisms and lenses: 

• Determine the index of refraction of a prism material.  

• Demonstrate total internal reflection (TIR) with right-angle prisms and show how to use 
the prisms to produce (a) 90° bending, (b) retroreflection, and (c) “periscope-type” 
bending. 

• Determine the index of refraction of a thin-lens material. 

• Determine the focal lengths of convex and concave lenses. 

Equipment List 
The following equipment is needed to complete this laboratory: 

1  equilateral prisma (25-mm faces by 25 mm long works well) 
2  45°-45°-90° prismsa (25-mm legs, 35-mm hypotenuse, 25 mm thick) 
2  diode laser pointersb (5 mW or less) 
1  spherometerb 
1  double-convex lensa (75-mm diameter by 150-mm focal length) 
1  double-concave lensa (75-mm diameter by 150-mm focal length) 
1  protractor 
1  white cardboard screen 
Index cards, white paper sheet, ( 8½" × 11" and 11" × 17"), masking tape, and ruler 

Procedure 

A. Index of Refraction of a Prism Material 
 1. Arrange the laser pointer, equilateral prism, and white cardboard screen on a flat tabletop 

as shown in Figure L-1. Center the prism over a sheet of white paper. Fasten down the 
white paper, cardboard screen, and laser with tape. 

                                                      
a These items are readily available from Edmund Scientific, Barrington, New Jersey,  
609-573-6250, as parts of their “Educational Quality Demonstration Optics,” at reasonable prices. See their 
Industrial Optics Division catalog. 
b These items are also available from Edmund Scientific but are more expensive. 
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Figure L-1  Setup for measuring minimum angle of deviation 

 2. As you rotate the prism relative to the incident laser beam, the laser spot D on the screen 
moves, so the angle of deviation δ will become larger or smaller. By experimentation, 
determine the smallest angle of deviation (δm) between an original beam direction OPQB 
and the deviated beam CD. (It should be clear that the farther the screen is from the prism 
the more precise will be your determination of δm, since small changes in spot D will then 
be more exaggerated.) 

 3. When you have achieved the minimum angle for δ, carefully tape the prism in place. 
Trace the prism edges on the paper, the straight segments OP and QB along the original 
direction, and the segment CD. (Note: Location of laser spots Q, C on the exit face of the 
prism and B, D on the screen are needed to be able to draw segments QB and CD.)  With 
the line segments drawn, remove the prism and measure the minimum angle δm with a 
protractor. Complete a ray trace of the incident beam through the prism, deviated at angle 
δm. Is the segment DC parallel to the prism base? Should it be? 

 4. Record the measured angle δm and the apex angle A. Use the formula 

 n

A

A

m

=

+F
HG

I
KJsin

sin

δ

2

2

 

  to calculate the index of refraction n. Compare your value with values given in Table 3-1. 
Does it agree with any value given there? What is your best guess for the prism material? 

B.  Total Internal Reflection (TIR) 
(When you have finished this part, you will have three different traces of laser light interacting 
with right-angle prisms, all on an 11" × 17" sheet of white tracing paper. 

 1. Set a right-angle prism on one of its parallel sides on a sheet of 11" × 17" white tracing 
paper. Tape the paper and prism in position. Shine a diode laser beam onto an appropriate 
face of the prism so that it undergoes total internal reflection (TIR) and exits the prism at 
90° to its original direction of entry. Use index cards as a screen to “locate” the laser beam 
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outside the prism. On the paper, trace the edges of the prism, a line along the incident 
beam, a line along the path through the prism, and a line along the exit beam. Label the 
angles of incidence and reflection and their values at the face where TIR takes place. 
What would you need to know to determine the critical angle at this face? Is the incident 
angle on the face where TIR occurs larger or smaller than the critical angle? 

 2. Move the right-angle prism to a different position on the 11" × 17" paper and tape it 
down. Direct the diode laser beam onto an appropriate face so that the beam returns along 
a direction parallel to its entering direction. Use index cards to “locate” the beam path. 
When you have achieved this condition of retroreflection, trace the edges of the prism, the 
entering beam, the path through the prism, and the exit beam. Draw appropriate angles at 
the faces where TIR occurs and give their correct values. 

 3. Move two right-angle prisms to a new location on the 
11" × 17" paper. Arrange them to produce “periscope 
action.”  This action requires, for example, that a 
horizontal beam that enters at one level be deflected 
downward 90° and exit horizontally at a different level, 
as shown in the accompanying sketch. Here the dashed 
squares indicate the locations of the two prisms. Use 
index cards to locate the beam through the prism 
arrangement. 

  When you have achieved the “periscope” geometry, 
tape the prisms down. Trace their edges, and trace the 
laser beam path from initial entry to final exit. Show 
where TIR occurs and label the incident and reflected 
angles there correctly, at each position. 

C.  Index of Refraction of a Thin Lens 

Use the lensmaker’s equation 1 1 1
1 2f

n n
n r r

g=
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KJ −
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L
NM

O
QP
 to determine the value of ng for the 

double-convex lens. Use a ruler, overhead lights, and an index card to obtain a good 
approximation for the focal length of the lens. (Going outside and imaging the sun would be 
even better.)  Use a spherometer to measure the radii of curvature r1 and r2. (You will have to be 
especially creative to get r1 and r2 if you don’t have access to a spherometer.)  With the values 
of f, r1, and r2, solve the lensmaker’s equation for ng, the index of refraction of the lens glass. 
Compare your value with values given in Table 3-1. Do you have a match? 

D.  Measuring the Focal Lengths of Thin Lenses 
Set up the two diode lasers on a stand or optical bench so that they emit beams parallel to one 
another and normal to the plane defining the vertical position of the thin lens. See Figure L-2. 
(To see the beams converging on the image side of the lens, you will have to use chalk-dust 
particles or smoke—some form of cloud—to illuminate the path.)  By moving the screen 
forward and backward, you can locate a position where the beams cross to form the “smallest” 
spot. This is the focal point for the lens. Measuring the optical bench distance from lens to focal 
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point gives the focal length. Compare this value to the value you obtained in part C, when you 
simply imaged a “distant” object on an index card. Which method is more accurate? Which 
method is easier? 

 

Figure L-2  Setup for determining focal length of a positive lens 

Replace the positive lens in Figure L-2 with the negative lens. The challenge now is greater 
since the two laser beams diverge on the right side of the lens—and do not form a real image 
anywhere. Can you design a method to locate the spots of the two parallel beams at the lens and 
the spots for the two diverging beams on the right of the lens, then “trace” your way back to 
locate the focal point on the left side of the lens? If you can locate the focal point on the left, 
you can then measure its distance from the lens to get the focal length of the negative lens. 

Student Project (optional) 
Design a 10X beam expander using first a combination of two positive lenses and next a 
combination of a positive and a negative lens. Carefully draw each design to scale. Refer to 
publications such as the Melles-Griot Catalog or the Edmund Scientific Industrial Optics 
Catalog to obtain lens diameters, focal lengths, and approximate costs for each beam-expander 
design (less housing). Test each design on an optical bench and measure the size of the incident 
and exit beams. Determine how closely each beam expander meets the 10X specification. Is 
there any reason for choosing one design over the other? 

Other Resources 
• The Education Council of the Optical Society of America (OSA) has prepared a 

discovery kit designed to introduce students to modern optical science and engineering. 
The kit includes two thin lenses, a Fresnel lens, a mirror, a hologram, an optical illusion 
slide, a diffraction grating, one meter of optical fiber, two polarizers, four color filters, 
and instructions for eleven detailed experiments. OSA offers teacher membership 
opportunities. Contact the Optical Society of America, 2010 Massachusetts Avenue, 
NW, Washington, D.C. 20036, 800-762-6960. 

• K-12 Optics Outreach kit, available from SPIE, Bellingham, Washington. 
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• Atneosen, R., and R. Feinberg. “Learning Optics with Optical Design Software,” 
American Journal of Physics, Vol 59, March 1991: pp 242-47. 

• “Teaching Optics with an O/H Projector,” Douglas S. Goodman, Polaroid Corporation, 
38 Henry St., Cambridge, Maryland. 
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Problem Exercises 
 1. Use the law of reflection to determine the 

(a) minimum height and (b) position for a 
plane mirror that just allows a 5'6" woman 
standing on the floor in front of the mirror to 
see both her head and feet in the mirror. See 
sketch. 

 
 

 2. White light contains all wavelengths from 
deep blue at 400 nm to deep red at 700 nm. A 
narrow beam of collimated white light is sent 
through a prism of apex angle 20° as shown. 
The prism is made of light flint glass whose 
refractive index at 400 nm is 1.60 and at 
700 nm is 1.565. What is the angular spread 
between the red and blue light at the minimum 
angle of deviation for each? 

 
 

 3. A ray of sodium light at 589 nm is incident on a 
rectangular slab of crown glass at an angle of 45° 
with the normal. (a) At what angle to the normal 
does this ray exit the slab? (b) What is the direction 
of the exiting ray relative to the entering ray? (c) 
Sketch an accurate trace of the ray through the slab.  

 

 4. An object 3 cm high is placed 20 cm to the left of (a) a convex and (b) a concave 
spherical mirror, each of focal length 10 cm. Determine the position and nature of the 
image for each mirror. 

 

 5. Make a ray-trace diagram—on an 8½" × 11" sheet of white paper—that locates the image 
of a 2-cm object placed 10 cm in front of a concave spherical mirror of curvature 6 cm. 
Make your drawing to scale. Where is the image located and what are its orientation and 
its size? Repeat this for a convex spherical mirror of the same curvature. 

 

 6. A fish in a lake looks up at the 
surface of the water. At what 
distance d along the surface, 
measured from the normal, is 
a water-skimming insect safe 
from the roving eye of the 
fish? 
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 7. What is the light cone acceptance angle for an optical fiber of diameter 100 µ, located in 
air, having a plastic core of index 1.49 and a plastic cladding of index 1.39? Make a 
sketch of the fiber, showing a limiting ray along the surface of the acceptance cone 
entering the fiber and refracting appropriately. 

 

 8. A laser beam is incident on the end face of a 
cylindrical rod of material as shown in the sketch. 
The refractive index of the rod is 1.49. How many 
internal reflections does the laser beam 
experience before it exits the rod? 

 

 9. A thin, double-convex lens has a refractive index of 
1.50. The radius of curvature of the front surface is 
15 cm and that of the rear surface is 10 cm. See 
sketch. (a) How far from the lens would an image of 
the sun be formed? (b) How far from the lens would 
an image of a toy figure 24 cm from the lens be 
formed? (c) How do the answers to (a) and (b) 
change if you flip the lens over? 

 

 10. The object shown in the accompanying sketch is 
midway between the lens and the mirror. The radius 
of curvature of the mirror is 20 cm. The concave lens 
has a focal length of 16.7 cm. (a) Where is the light 
that travels first to the mirror and then to the lens 
finally imaged? (b) Where is the light finally imaged 
that travels first to the lens? (Note: Be especially 
careful of applying the sign convention!)  

 

 11. A ray of light makes an angle of incidence of 45° at the center of one face of a transparent 
cube of refractive index 1.414. Trace the ray through the cube, providing backup 
calculations to support your answer. 

 12. Two positive thin lenses, each of focal length f = 3 cm, are separated by a distance of 
12 cm. An object 2 cm high is located 6 cm to the left of the first lens. See sketch.  

 
 

  On an 8½" × 11" sheet of paper, make a drawing of the two-lens system, to scale. (a) Use 
ray-tracing techniques to locate the final image and describe its size and nature. (b) Use 
the thin-lens equation to locate the position and size of the final image. How well do your 
results for (a) and (b) agree? 

 



B A S I C  G E O M E T R I C A L  O P T I C S  

115 

 13. A plano-convex lens of focal length 25.0 cm is to be made with crown glass of refractive 
index 1.52. Calculate the radius of curvature of the grinding and polishing tools to be 
used in making this lens. 

 14. An eyepiece is made of two positive thin lenses, each of focal length f = 20 mm, 
separated by a distance of 16 mm. (a) Where must a small object viewed by the eyepiece 
be placed so that the eye receives parallel light from the eyepiece? (b) Does the eye see 
an erect image relative to the object? Is it magnified? (c) Use a ray-trace diagram to 
answer these questions by inspection. 
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