Thick Lenses and Lens Systems(6)

Cardinal Points(6.1)

Figure 6.1 A thick lens.

Principle plane: the plane on which the extension lines of the ray incident from the first focus and the ray emerged from the lens intercept.

Secondary Plane: the same as the principle plane except that the ray is from the second focus.

First principal point H_{1} : the intersection of the Principle plane and the optical axis.

Second principal point H_{2} : the intersection of the secondary plane and the optical axis.

Nodal points N_{1} and N_{2} : the interception of the incident and emerged rays which pass the optical center with optical axis.

Cardinal Points: the two focal, two principal and two nodal points.

Thick Lens Formula

Single Lens

Figure 6.4 Thick-lens geometry.

If consider the thick lens as the combination of two spherical refracting surface separated by a distance d_{l}, the result is

$$
\begin{aligned}
& \frac{1}{s_{o}}+\frac{1}{s_{i}}=\frac{1}{f} \\
& \frac{1}{f}=\left(n_{l}-1\right)\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}+\frac{\left(n_{l}-1\right) d_{l}}{n_{l} R_{1} R_{2}}\right]
\end{aligned}
$$

Note that s_{o}, s_{i} and f are measured from the first and second principal planes. Also the distance of the principal points and the vertices $\overline{V_{1} H_{1}}=h_{1}$ and $\overline{V_{2} H_{2}}=h_{2}$ are

$$
\begin{aligned}
& h_{1}=-\frac{f\left(n_{l}-1\right) d_{l}}{R_{2} n_{l}} \\
& h_{2}=-\frac{f\left(n_{l}-1\right) d_{l}}{R_{1} n_{l}}
\end{aligned}
$$

which are positive when the principal points lie to the right of their respective vertices.

Double Lens

The focus becomes

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

(a) The principle planes are

$$
\begin{aligned}
& \overline{H_{11} H_{1}}=\frac{f d}{f_{2}} \\
& \overline{H_{22} H_{2}}=\frac{f d}{f_{1}}
\end{aligned}
$$

Figure 6.5 A compound thick lens.

Analytical Ray Tracing(6.2)

Figure 6.7 Ray geometry.

At the First Interface

From Snell's Law with paraxial approximation,

$$
n_{i 1} \sin \theta_{i 1}=n_{t 1} \sin \theta_{t 1} \Rightarrow n_{i 1} \theta_{i 1} \approx n_{t 1} \theta_{t 1}
$$

Since, $\theta_{i 1}=\alpha_{i 1}+\alpha_{1}, \theta_{t 1}=\alpha_{t 1}+\alpha_{1}$ and $\alpha_{1} \approx \frac{y_{1}}{R_{1}}$, we have

$$
n_{i 1}\left(\alpha_{i 1}+\frac{y_{1}}{R_{1}}\right)=n_{t 1}\left(\alpha_{t 1}+\frac{y_{1}}{R_{1}}\right) \Rightarrow n_{t 1} \alpha_{t 1}=n_{i 1} \alpha_{i 1}-\left(\frac{n_{t 1}-n_{i 1}}{R_{1}}\right) y_{1}
$$

Since $D_{1}=\frac{n_{t 1}-n_{i 1}}{R_{1}}$, we have

$$
n_{t 1} \alpha_{t 1}=n_{i 1} \alpha_{i 1}-D_{1} y_{1}
$$

This is called the refraction equation pertaining to the first interface.

From the First Interface to the Second

$$
y_{2}=y_{1}+d_{21} \tan \alpha_{t 1} \approx y_{1}+d_{21} \alpha_{t 1}
$$

This is known as the transfer equation.

At the Second Interface

$$
n_{t 2} \alpha_{t 2}=n_{i 2} \alpha_{i 2}-D_{2} y_{2}
$$

where

$$
D_{2}=\frac{n_{t 2}-n_{i 2}}{R_{2}}, n_{i 2}=n_{t 1}, \alpha_{i 2}=\alpha_{t 1}
$$

Matrix Method

At the first interface

$$
\left[\begin{array}{c}
n_{t 1} \alpha_{t 1} \\
y_{t 1}
\end{array}\right]=\left[\begin{array}{cc}
1 & -D_{1} \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
n_{i 1} \alpha_{i 1} \\
y_{i 1}
\end{array}\right]
$$

Note that in this case $y_{t 1}=y_{i 1}$
let

$$
r_{t 1}=\left[\begin{array}{c}
n_{t 1} \alpha_{t 1} \\
y_{t 1}
\end{array}\right], r_{i 1}=\left[\begin{array}{c}
n_{i 1} \alpha_{i 1} \\
y_{i 1}
\end{array}\right], R_{1}=\left[\begin{array}{cc}
1 & -D_{1} \\
0 & 1
\end{array}\right]
$$

then

$$
r_{t 1}=R_{1} r_{i 1}
$$

R_{1} Is called the refraction matrix.

Similarly, we can define a transfer matrix F_{21} to relate the ray from the first interface to the second inside the lens. We have

$$
r_{i 2}=F_{21} r_{t 1}
$$

where

$$
r_{i 2}=\left[\begin{array}{c}
n_{i 2} \alpha_{i 2} \\
y_{i 2}
\end{array}\right], \quad F_{21}=\left[\begin{array}{cc}
1 & 0 \\
\frac{d_{21}}{n_{t 1}} & 1
\end{array}\right]
$$

At the second interface, we have

$$
r_{t 2}=R_{2} r_{i 2}
$$

where

$$
r_{t 2}=\left[\begin{array}{c}
n_{t 2} \alpha_{t 2} \\
y_{t 2}
\end{array}\right], \quad R_{2}=\left[\begin{array}{cc}
1 & -D_{2} \\
0 & 1
\end{array}\right] \backslash
$$

To sum up, we have

$$
r_{t 2}=R_{2} F_{21} R_{1} r_{i 1}
$$

Let $A=R_{2} F_{21} R_{1}$, then A is called the system matrix of the optical system.
Substitute $n_{t 1}=n_{i 2}=n_{l}, d_{21}=d_{l}$, then

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
1-\frac{D_{2} d_{l}}{n_{l}} & -D_{1}-D_{2}+\frac{D_{1} D_{2} d_{l}}{n_{l}} \\
\frac{d_{l}}{n_{l}} & 1-\frac{D_{1} d_{l}}{n_{l}}
\end{array}\right]
$$

Note that

$$
-a_{12}=D_{1}+D_{2}-D_{1} D_{2} \frac{d_{l}}{n_{l}}=-\frac{1}{f}
$$

according to the thick lens formula.

Image Formation

Figure 6.8 Image geometry.

Suppose the object point is located at Point P_{O} and the image P_{I}, then

$$
r_{I}=F_{I 2} A_{21} F_{1 O} r_{O}
$$

which describe how the rays travel from P_{O} to P_{I} where $F_{1 O}$ is the transfer matrix from P_{O} to the lens and $F_{I 2}$ from the lens to P_{I}. However, we do not know $F_{I 2}$ yet since we are not sure where the image will form. By expanding the compete system matrix, it is possible to find the location of the image such that all rays from P_{O} meet at P_{I}.

Aberrations

Chromatic aberrations: due to the fact that refraction index is a function of frequency
monochromatic aberrations: spherical aberration, coma, astigmatism, Petzval field curvature and distortion.

Spherical Aberration

Since

$$
\sin \phi=\phi-\frac{\phi^{3}}{3!}+\frac{\phi^{5}}{5!}-\frac{\phi^{7}}{7!}+\cdots
$$

if instead of $\sin \phi \approx \phi$, we keep the third order term, that is $\sin \phi \approx \phi-\frac{\phi^{3}}{3!}$.
This is called third order approximation. Apply this to the origin derivation of the formula of the refraction of a spherical interface, we have a more accurate formula as follow

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}+h^{2}\left[\frac{n_{1}}{2 s_{o}}\left(\frac{1}{R}+\frac{1}{s_{o}}\right)^{2}+\frac{n_{2}}{2 s_{i}}\left(\frac{1}{R}-\frac{1}{s_{i}}\right)^{2}\right]
$$

Comparing to the original formula

$$
\frac{n_{1}}{s_{o}}+\frac{n_{2}}{s_{i}}=\frac{n_{2}-n_{1}}{R}
$$

it is obviously that the h^{2} is the correction term. The result is a dependency of the image location on h, the distance of
$\begin{array}{ll}\text { Table 9A } & \text { VALUES OF } \sin \theta \text { AND ITS FIRST THREE EXPAN- } \\ & \text { SION TERMS }\end{array}$

	$\sin \theta$	θ	$\frac{\theta^{3}}{3!}$	$\frac{\theta^{5}}{5!}$
10°	0.1736482	0.1745329	0.0008861	0.0000135
20°	0.3420201	0.3490658	0.0070888	0.0000432
30°	0.5000000	0.5235988	0.0239246	0.0003280
40°	0.6427876	0.6981316	0.0567088	0.0013829

Longitudinal Spherical aberration (L•SA): the distance between the axial intersection of a ray and the paraxial focus.
Positive SA: the marginal rays intersect the central axis before the paraxial focus. Usually, when the lens is convergent.
Negative SA: the marginal rays intersect the central axis after the paraxial focus. Usually, when the lens is divergent.

Traverse(lateral) Spherical aberration (T•SA): the height above the central axis where the ray intercepts the paraxial focal plane.

Circle of least confusion ($\sum_{L C}$): for an object point in infinity, the plane where the image has the smallest diameter.

Figure 6.13 Spherical aberration resulting from refraction at a single interface.

Figure 6.16 SA for a planar-convex
lens.

(b)

Figure 6.14 Spherical aberration for a lens. The envelope of the refracted rays is called a caustic. The intersection of the marginal rays and the caustic locates $\Sigma_{\text {LC }}$.

(b)

Figure 6.17 Corresponding axial points for which $S A$ is zero.
(c)

2. Carefully choosing the lens.

Reducing SA:

1. Reducing the aperture such that the decreases the number off-axis rays. However, also reduces the amount of light entering the system.
2. Choose the right locations of the object and image;
a. Let $s_{o}=f=s_{i}$. If the lens is symmetry, then the deviation of the ray is minimum.
b. Find the no SA points.
3. Smallest spherical aberration occurs when $q=+0.7$, where
$q=\frac{r_{2}+r_{1}}{r_{2}-r_{1}} . q$ Is called shape factor.

(a)

FIGURE 9F
(a) Lenses of different shapes but with the same power or focal length. The difference is one of bending. (b) Focal length versus ray height h for these lenses

FIGURE 9G
A graph of the spherical aberration for lenses of different shape but the same focal length. For the lenses shown $h=1 \mathrm{~cm}, f=+10 \mathrm{~cm}, d=2 \mathrm{~cm}$, and $n^{\prime}=1.51700$.

Table 9B SPHERICAL ABERRATION OF LENSES HAVING THE SAME FOCAL LENGTH BUT DIFFERENT SHAPES q Lens thickness $=1 \mathrm{~cm} \quad f=10 \mathrm{~cm} \quad n=1.5000 \quad h=1 \mathrm{~cm}$

Shape of lens	$r_{\mathbf{1}}$	$r_{\mathbf{2}}$	\boldsymbol{q}	Ray tracing	Third-order theory
Concavo-convex	-10.000	-3.333	-2.00	0.92	0.88
Plano-convex	∞	-5.000	-1.00	0.45	0.43
Double convex	20.000	-6.666	-0.50	0.26	0.26
Equiconvex	10.000	-10.000	0	0.15	0.15
Double convex	6.666	-20.000	+0.50	0.10	0.10
Plano-convex	5.000	∞	+1.00	0.11	0.11
Concavo-convex	3.333	10.000	+2.00	0.27	0.29

Coma (comatic aberration)

In the absence of SA, the light coming off an off-axis object point does not focus at one single point on the image plane is called coma.

1. Negative coma: the focus of marginal rays is closer to the central axis than principle rays
2. positive coma: the focus of marginal rays is further to the central axis than principle rays
3. Coma will causes interference.
4. Coma is dependent on the shape of the lens.

Figure 6.23 Third-order coma. (a) A computer-generated diagram of the image of a point source formed by a heavily astigmatic optical system. (b) A plot of the corresponding irradiance distribution. (Pictures courtesy of OPAL Group, St. Petersburg, Russia.)

(a)

(b)

FIGURE 9K
Geometry of coma, showing the relative magnitudes of sagittal and tangential magnifications.

Table 9D COMPARISON OF COMA AND SPHERICAL ABERRATION FOR LENSES OF THE SAME FOCAL LENGTH BUT DIFFERENT SHAPE FACTOR $h=1.0 \mathrm{~cm} \quad f=+10.0 \mathrm{~cm} \quad y=2.0 \mathrm{~cm}$ $n=1.5000$

Shape of lens	Shape factor	Coma, cm	Spherical aberration, cm
Concavo-convex	-2.0	-0.0420	+0.88
Plano-convex	-1.0	-0.0270	+0.43
Double convex	-0.5	-0.0195	+0.26
Equiconvex	0	-0.0120	+0.15
Double convex	+0.5	-0.0045	+0.10
Plano-convex	+1.0	+0.0030	+0.11
Concavo-convex	+2.0	+0.0180	+0.29

Shape factor $\mathrm{q}=0.8$ for no coma is near the shape factor $\mathrm{q}=0.714$ for minimum spherical aberration.

Astigmatism

1. Caused by the difference in ray configuration in tangential (meridional) and sagittal planes of an off-axis object point.
2. The rays from the offaxis object point focus to two lines called tangential and sagittal focus, F_{T} and F_{S}.
3. Astigmatism is approximately proportional to the focal length and is very little improved by changing

the shape of the lens. 4. Loci of the tangential and sagittal images approximately form two paraboloids. 5. Astigmatism can be reduced by proper spacing of the lens elements or by the

Figure 6.28 Images in the tangent and sagittal focal planes.
proper location of a stop.
6. When astigmatism is completed removed, the two loci of the tangential and sagittal images form into one paraboloidal surface, called Petzval surface.

Diagrams showing the astigmatic surfaces T and S in relation to the fixed
Petzval surface P as the spacing between lenses (or between lens and stop) is
changed.

Field Curvature

When no SA, coma and astigmatism exist, a planar object normal to the axis will imaged into a curved surface instead of a plane in the paraxial region. This aberration is known as Petzval field curvature.

Let Δx be the distance of an image point at height h_{i} on the Petzval surface form the paraxial image plane. Then,

$$
\Delta x=\frac{y_{i}^{2}}{2} \sum_{j=1}^{m} \frac{1}{n_{j} f_{j}}
$$

for an m-lens combination. Note that the spacings of the lenses has no effect on Δx. Suppose $m=2$,

$$
\Delta x=0 \Rightarrow \frac{1}{n_{1} f_{1}}+\frac{1}{n_{2} f_{2}}=0 \Rightarrow n_{1} f_{1}+n_{2} f_{2}=0 .
$$

This is called Petzval condition.
Example: $f_{1}=-f_{2}, n_{1}=n_{2}$.

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}} \Rightarrow f=\frac{f_{1}^{2}}{d}
$$

Distortion

1. Distortion is caused by the fact that the transverse magnification, M_{T}, is a function of the off-axis image distance. In other word, distortion arises because different areas of the lens have different local lengths.
2. Positive or pincushion distortion: M_{T} increases with the axial distance.
3. Negative or barrel distortion: M_{T} decreases with the axial distance.
4. Effect of stop
a. Distortion is very small for a thin positive lens if the aperture is located at the lens.
b. Stop after the lens causes positive distortion.
c. Stop before the lens causes negative distortion.
d. If two lens are perfectly symmetrical with a stop at the middle, the distortion can be cancelled.

Chromatic aberrations

1. Due to the dependency of the refraction index on frequency. Lights with different wavelengths have different focuses.
2. A•CA: axial chromatic aberration.
3. L•CA: lateral chromatic aberration.

Figure 6.37 Lateral chromatic aberration.

Figure 6.36 Axial chromatic aberration.

Thin Achromatic Doublets

Purpose: to bring the focus of the red and blue lights together by a combination of two thin lens separated by a distance d.

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

Let

$$
\frac{1}{f_{1}}=\left(n_{1}-1\right)\left(\frac{1}{R_{11}}-\frac{1}{R_{12}}\right)=\left(n_{1}-1\right) \rho_{1}, \frac{1}{f_{2}}=\left(n_{2}-1\right)\left(\frac{1}{R_{21}}-\frac{1}{R_{22}}\right)=\left(n_{2}-1\right) \rho_{2},
$$

then

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}=\left(n_{1}-1\right) \rho_{1}+\left(n_{2}-1\right) \rho_{2}-d\left(n_{1}-1\right) \rho_{1}\left(n_{2}-1\right) \rho_{2}
$$

Let the focus of red light be f_{R} and blue light f_{B}. What we want is $\frac{1}{f_{R}}=\frac{1}{f_{B}}$.
This leads to

$$
\left(n_{1 R}-1\right) \rho_{1}+\left(n_{2 R}-1\right) \rho_{2}-d\left(n_{1 R}-1\right) \rho_{1}\left(n_{2 R}-1\right) \rho_{2}=\left(n_{1 B}-1\right) \rho_{1}+\left(n_{2 B}-1\right) \rho_{2}-d\left(n_{1 B}-1\right) \rho_{1}\left(n_{2 B}-1\right) \rho_{2}
$$

Case 1: Select $d=0$, we have

$$
\frac{\rho_{1}}{\rho_{2}}=-\frac{n_{2 B}-n_{2 R}}{n_{1 B}-n_{1 R}} .
$$

Let the focus of yellow light be f_{Y}, then

$$
\frac{1}{f_{1 Y}}=\left(n_{1 Y}-1\right) \rho_{1}, \frac{1}{f_{2 Y}}=\left(n_{2 Y}-1\right) \rho_{2} \Rightarrow \frac{\rho_{1}}{\rho_{2}}=\frac{\left(n_{2 Y}-1\right) f_{2 Y}}{\left(n_{1 Y}-1\right) f_{1 Y}} .
$$

Therefore,

$$
\frac{f_{2 Y}}{f_{1 Y}}=-\frac{\left(n_{2 B}-n_{2 R}\right) /\left(n_{2 Y}-1\right)}{\left(n_{1 B}-n_{1 R}\right) /\left(n_{1 Y}-1\right)} .
$$

Definition:

1. Dispersive power: $\frac{n_{B}-n_{R}}{n_{Y}-1}$.
2. Dispersive index, or V-number, or Abbe number: $V=\frac{n_{Y}-1}{n_{B}-n_{R}}$.

Thus,

$$
\frac{f_{2 Y}}{f_{1 Y}}=-\frac{V_{1}}{V_{2}} \Rightarrow f_{1 Y} V_{1}+f_{2 Y} V_{2}=0
$$

Case 2: Select $n_{1}=n_{2}$, then

$$
d=\frac{1}{n_{B}+n_{R}-2}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right)=\frac{\left(f_{1 Y}+f_{2 Y}\right)\left(n_{Y}-1\right)}{n_{B}+n_{R}-2} .
$$

If $n_{Y}=\frac{n_{B}+n_{R}}{2}$, we have

$$
d=\frac{f_{1 Y}+f_{2 Y}}{2}
$$

cemented

Gaussian

Edge contact

Figure 6.41 Achromatized lenses.

GRIN (GRadient INdex) Systems

1. Homogeneous lenses apply the difference between its refraction index and that of the surroundings medium, and the curvature of its interfaces to reconfigures a wavefront or the direction of the rays.
2. Same effect can be achieve by changing the refraction index profile of the lenses while keeping the lenses flat.
3. Radial-GRIN: refraction index varies axially.

Exampe:
If a parallel light is to focus at a point F as in the figure, all optical path must equal. For a ray located at distance r from the center,

$$
n_{\max } d+f=(O P L)_{0}=(O P L)_{r} \approx n(r) d+\overline{A B}+f \Rightarrow n_{\max } d \approx n(r) d+\overline{A B} .
$$

Since $\overline{A F} \approx \sqrt{r^{2}+f^{2}}$ and $\overline{A B}=\overline{A F}-f$,

$$
n(r)=n_{\max }-\frac{\sqrt{r^{2}+f^{2}}-f}{d}
$$

Typical index profile:

$$
n(r)=n_{\max }\left(1-\frac{a r^{2}}{2}\right)
$$

- Light propagates sinusoidally. The period in space: $\frac{2 \pi}{\sqrt{a}}$
- By change the object distance or the length of the lens, an erect, real, magnified image can be formed.
- Definition:

1. Gradient constant: \sqrt{a}.
2. Pitch: thickness of the lens in term of the period.

Axial-GRIN

1. Refraction index varies axially instead of radially.
2. Also combined with curve surfaces.
3. Can correct spherical aberrations

Figure 6.45 (a) A slab of axial-GRIN material for which the index of refraction is $n(z)$. (b) An axial-GRIN lens for which there is no spherical aberration. (c) An ordinary lens having SA. (d) The index profile.

Optical sine theorem

$$
n_{o} y_{o} \sin \alpha_{o}=n_{i} y_{i} \sin \alpha_{i}
$$

where n_{o}, y_{o}, α_{o}, and n_{i}, y_{i}, α_{i} are the index, height and slope angle of the ray in object and image space, respectively.

If coma is to be zero,

$$
M_{T}=\frac{y_{i}}{y_{o}}=\mathrm{constant}
$$

for all α_{o}. For paraxial rays: $\sin \alpha_{o}=\alpha_{o p}, \sin \alpha_{i}=\alpha_{i p}$, therefore

$$
\frac{\sin \alpha_{o}}{\sin \alpha_{i}}=\frac{\alpha_{o p}}{\alpha_{i p}}=\text { constant }
$$

which is known as the Sine Condition.

