Thick Lenses and Lens Systems(6)

Cardinal Points(6.1)
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Figure 6.1 A thick lens.

Figure 6.2 Nodal points.

Principle plane: the plane on
which the extension lines of
the ray incident from the first
focus and the ray emerged
from the lens intercept.

Secondary Plane: the same as
the principle plane except that
the ray is from the second
focus.

First principal point H, : the

intersection of the Principle
plane and the optical axis.

Second principal point H,:

the intersection of the
secondary plane and the
optical axis.

Nodal points N,and N, : the

interception of the incident and
emerged rays which pass the
optical center with optical axis.

Cardinal Points: the two focal,
two principal and two nodal
points.



Thick Lens Formula
Single Lens

ke 5y 5 Figure 6.4 Thicklens geometry.

If consider the thick lens as the combination of two spherical refracting
surface separated by a distance d,, the result is
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Note that s_, s, and f'are measured from the first and second principal
planes. Also the distance of the principal points and the vertices
V.H =h and V,H,=h, are
fin-1)d,
R
o fn,-1)d,
’ Rn,
which are positive when the principal points lie to the right of their
respective vertices.
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Double Lens

The focus becomes
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Figure 6.5 A compound thick lens.

Analytical Ray Tracing(6.2)

| dy, | dy, Figure 6.7 Ray geometry.

At the First Interface
From Snell’s Law with paraxial approximation,
n,sinb, =n,sin6,, = n,8,~n,0,
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Since, 6,,=a,,+a,, 0 ,=c  +o, and alzl? we have
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Since D, = , We have

1
n,0,=n,0, Dy,

This is called the refraction equation pertaining to the first interface.
From the First Interface to the Second

Yy=yy tdytane =y, +d, 0,
This is known as the transfer equation.

At the Second Interface
N0, =h50, =Dy,

where
LY,
D,= R s Njp=Nyys O =00,;
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Matrix Method
At the first interface
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Note that in this case y ,=y,,
let
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R, Is called the refraction matrix.

Similarly, we can define a transfer matrix F,, to relate the ray from the
first interface to the second inside the lens. We have
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At the second interface, we have
=Ry,

where
n 2“ 2 1 _D
¥, e R,= 21
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To sum up, we have

=R Ry
Let A=R,F, R,,then 4 is called the system matrix of the optical system.
Substitute n ,=n.,=n, d, =d,, then
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according to the thick lens formula.

Image Formation

b
o

Figure 6.8 Image geometry.

Suppose the object point is located at Point P, and the image P,, then
rEFp Ay Fioro

which describe how the rays travel from P, to P, where F,, is the

transfer matrix from P, to the lens and F,, from the lens to P,.

However, we do not know F,, yet since we are not sure where the image

will form. By expanding the compete system matrix, it is possible to find
the location of the image such that all rays from P, meet at P,.



Aberrations

Chromatic aberrations: due to the fact that refraction index is a

function of frequency

monochromatic aberrations: spherical aberration, coma, astigmatism,

Petzval field curvature and distortion.

Spherical Aberration

Since
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If instead of sind=¢, we keep the third order term, that is sing=

This is called third order approximation. Apply this to the origin

derivation of the formula of the refraction of a spherical interface, we

have a more accurate formula as follow
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Comparing to the original formula
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Table 9A VALUES OF sin § AND ITS FIRST THREE EXPAN-
1 SION TERMS
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correction term. Theresultisa 10 01762
. 20° 0.3420201
dependency of the image 30° 05000000
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0.1745329
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0.0000135
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location on 4, the distance of

the ray t the interface to the
optical axis.



Longitudinal Spherical aberration (L-SA): the distance between the

axial intersection of a ray and the paraxial focus.

Positive SA: the marginal rays intersect the central axis before the
paraxial focus. Usually, when the lens is convergent.

Negative SA: the marginal rays intersect the central axis after the
paraxial focus. Usually, when the lens is divergent.

Traverse(lateral) Spherical aberration (T-SA): the height above the
central axis where the ray intercepts the paraxial focal plane.

Circle of least confusion (ELC ): for an object point in infinity, the
plane where the image has the smallest diameter.

Figure 6.13 Spherical aberration resulting from refraction at a single
interface. ;



Reducing SA:
1.

N

Figure 6.16 SA for a planar-convex
lens.

Figure 6.14 Spherical aberration for a lens. The envelope of the
refracted rays is called a caustic. The intersection of the marginal rays

and the caustic locates % ¢.

Reducing the aperture such that the
decreases the number off-axis rays.
However, also reduces the amount
of light entering the system.
Carefully choosing the lens. Figure 6.17 Corresponding axial poins for which SA is zero.
Choose the right locations of the

object and image;

a. Lets =f=s,. If the lens is symmetry, then the deviation of the

(©)

ray is minimum.
b.  Find the no SA points.
Smallest spherical aberration occurs when ¢=+0.7, where



FIGURE 9F
(q) Lenses of different shapes but with the same power or focal length. The
difference is one of bending. (b) Focal length versus ray height 4 for these lenses,

Ray

Table 9B SPHERICAL ABERRATION OF LENSES HAVING THE SAME
FOCAL LENGTH BUT DIFFERENT SHAPES ¢

Lens thickness = 1 cm f=10cm n = 1.5000 h=1lcm
Ray Third-order

Shape of lens ry ry q tracing theory
Concavo-convex —10.000 — 3.333 —-2.00 0.92 0.88
Plano-convex o] — 5.000 —1.00 0.45 0.43
Double convex 20.000 — 6.666 —-0.50 0.26 0.26
Equiconvex 10.000 —10.000 0 0.15 0.15
Double convex 6.666 —20.000 +0.50 0.10 0.10
Plano-convex 5.000 0 +1.00 0.11 0.11 .
Concavo-convex 3.333 10.000 +2.00 0.27 0.29
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FIGURE 9G
A graph of the spherical aberration for lenses of different shape but the same
focal length. For the lenses shown A = 1 cm, f= +10 cm, d = 2 cm, and
n’ = 151700,



Coma (comatic aberration)

In the absence of SA, the light coming off an off-axis object point does
not focus at one single point on the image plane is called coma.

1.  Negative coma:
the focus of
marginal rays is
closer to the
central axis than
principle rays

2. positive coma:
the focus of
marginal rays is

e further to the
central axis than
principle rays

3. Coma will causes
interference.

4. Comais
dependent on the
shape of the lens.

(@)

Figure 6.23 Third-order coma. (a) A computer-generated diagram of the image of a
point source formed by a heavily astigmatic optical system. (b) A plot of the corre-
sponding irradiance distribution. (Pictures courtesy of OPAL Group, St. Petersburg, Russia.)




COMPARISON OF COMA AND SPHERICAL
t Table 9D ABERRATION FOR LENSES OF THE SAME
. : FOCAL LENGTH BUT DIFFERENT SHAPE
] FACTOR
(X : | h=10cm f= +10.0cm y=20cm
! Aus z n = 1.5000
g f ¥
Shape Spherigal
Shape of lens factor Coma, cm aberration, cm
@ Concavo-convex -2.0 —0.0420 +0.88
Plano-convex —1.0 —0.0270 +0.43
Geometry of- Double convex —0.5 —0.0195 +0.26
Geometry of coma, showing the relative magnitudes of sagittal and tangential Eouic ocniféx 0. T ooia0 ol
ificati qu .
eameion ) Double convex +0.5 —0.0045 +0.10
Plano-convex +1.0 +0.0030 +0.11
Concavo-convex +2.0 +0.0180 +0.29

Shape factor g=0.8 for no coma is near the shape factor g=0.714 for
minimum spherical aberration.

Astigmatism

Caused by the difference
in ray configuration in
tangential (meridional)
and sagittal planes of an
off-axis object point.

The rays from the off-
axis object point focus to
two lines called
tangential and sagittal
focus,F, and F.

. Astigmatism is

s approximately
proportional to the focal
= length and is very little
sagittal plane improved by changing

meridional plane ]
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Figure 6.28 Images in the tangent and sagittal focal planes.

the shape of the lens.
4.  Loci of the
tangential and sagittal
Images approximately
form two paraboloids.
5. Astigmatism can
be reduced by proper
spacing of the lens
elements or by the

proper location of a stop.

6.  When astigmatism is completed
removed, the two loci of the tangential and sagittal images form into one

paraboloidal surface, called Petzval surface.
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FIGURE 9R
Diagrams showing the astigmatic surfaces 7 and S in relation to the fixed

Petzval surface P as the spacing between lenses (or between lens and stop) is
changed.






Field Curvature

When no SA, coma and astigmatism
exist, a planar object normal to the
axis will imaged into a curved
surface instead of a plane in the

. paraxial region. This aberration is
known as Petzval field curvature.

o;

(a) Paraxial
image
plane

Let Ax be the distance of an image point at height /4, on the Petzval
surface form the paraxial image plane. Then,

i
for an m-lens combination. Note that the spacings of the lenses has no
effect on Ax. Suppose m=2,

Ax=0 = L+L=0 = n.,f,+n,/,=0.

mh M

This is called Petzval condition.

Example: f,=-1,, n,=n,.

11,1 d o f
AT



Distortion

1.  Distortion is caused by the fact that the transverse magnification,
M., is a function of the off-axis image distance. In other word,

distortion arises because different areas of the lens have different

local lengths.
2. Positive or pincushion distortion: M, increases with the axial

distance.
3. Negative or barrel distortion: M, decreases with the axial distance.

4.  Effect of stop
a.  Distortion is very small for a thin positive lens if the aperture
is located at the lens.
b.  Stop after the lens causes positive distortion.
Stop before the lens causes negative distortion.
d. Iftwo lens are perfectly symmetrical with a stop at the middle,
the distortion can be cancelled.

o

Figure 6.34 The effect of stop location on distortion.

Figure 6.33 (a) Undistorted object. (b) When the magnification on the
optical axis is less than the off-axis magnification, pincushion distortion
results. (¢) When it is greater on axis than off, barrel distortion results.
(d) Pincushion distortion in a single thin lens. (e) Barrel distortion in a
single thin lens. (Photos by EH.)



Chromatic aberrations

1.  Due to the dependency of the refraction index on frequency. Lights
with different wavelengths have different focuses.

2.  A-CA: axial chromatic aberration.

3. L-CA: lateral chromatic aberration.

P

==
e

Red\

\.9, Figure 6.37 Lateral chromatic aberration.
y i
~

Figure 6.36 Axial chromatic aberration.

Thin Achromatic Doublets

Purpose: to bring the focus of the red and blue lights together by a
combination of two thin lens separated by a distance d.

1. 1,1 4

o h L
Let

PR IVER S SN

171-(1 )(R__R )=(n,-1p,, fz-(nz 1)(R21 R22) (ny,-1)p,,
then

1 1 1 _d

?_Z ]72 f_lfz_(l 1)p1+(n2 1)p2 (n1 1)p1(n2 l)pz
Let the focus of red light be £, and blue light f£,. What we want is l:fL

R B

This leads to

(an_l)pl +(n2R_l)pz_d(an_l)pl(nzk_l)pzz(nw_l)pl +(n23_l)pz_d(nlB_l)pl(nzB_l)pz

Case 1: Select d=0, we have
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Let the focus of yellow light be £, then
1 1 Py~ 1y
T O R T
Therefore,
é’: _ (515 (nyy=1)
Sy (nlB_an)/(nlY_l).

Definition:

1.  Dispersive power: 2",

ny-1
: . -1
2. Dispersive index, or V-number, or Abbe number; ="
hp~Hg

Thus,

iy

]%:_7; = fiV1thyV2=0

Case 2: Select n,=n,, then

gL (1,1, V) )

ngtn,=2 p, p, ny+n,—2

npth,

If n,= , We have

ity

2

Fraunhofer Edge contact Center contact
cemented

Gaussian Edge contact Center contact Figure 6.41 Achromatized lenses.



GRIN (GRadient INdex) Systems

1.  Homogeneous lenses apply the difference between its refraction
index and that of the surroundings medium, and the curvature of its
interfaces to reconfigures a wavefront or the direction of the rays.

2.  Same effect can be achieve by changing the refraction index profile
of the lenses while keeping the lenses flat.

3. Radial-GRIN: refraction index varies axially.

Exampe:

If a parallel light is to focus at a point F' as in the figure, all optical
path must equal. For a ray located at distance » from the center,

nmaxd+f=(OPL)0=(OPL)rzn(r)d+E+f = nmaxdzn(r)dhﬁ :
Since AF=y/r2+f? and AB=AFf,

L i
d

n(r)=n_.

(a)

(b)

Figure 6.42 A disk of transparent glass whose index of refraction
decreases radially out from the central axis. (b) The geometry corre-
sponding to the focusing of parallel rays by a GRIN lens.



Typical index profile:

ar2

n(r) =nmax(1 —T).

. Light propagates sinusoidally. The period in space: 2%
a
. By change the object distance or the length of the lens, an erect,
real, magnified image can be formed.
. Definition:
1.  Gradient constant: \/a.
2.  Pitch: thickness of the lens in term of the period.

Axial-GRIN

1. Refraction index varies axially instead of radially.
2. Also combined with curve surfaces.
3. Can correct spherical aberrations

(a) X

Figure 6.45 (a) A slab of axial-GRIN material for which the index
of refraction is n(z). (b) An axial-GRIN lens for which there is no spheri-
cal aberration. (c) An ordinary lens having SA. (d) The index profile.



Optical sine theorem

ny sing_=nysing.
where n_, y_, a_,and n, y,,c. are the index, height and slope angle of
the ray in object and image space, respectively.

If coma is to be zero,

MT= & =constant
Yo

for all e« . For paraxial rays: sino, =et, sino,=a, , therefore

SlIlOLO aop

Smao, OCl.p

which is known as the Sine Condition.

=constant




